Logics of Metaphysical Definition

Andrew Bacon

First draft June 2023, updated October 15, 2025

Contents

Introduction

Metaphysical Definability

2.1 Languages
2.2 Linguistic definitiono
2.3 Metaphysical definition

Models of Metaphysical Definability

3.1 Definability structures 0oL
3.2 Definability structures for A-signatures
3.3 A-closed Definability Structures
3.4 Conditional Definability Structures
3.5 Imterpretationso
3.6 Models

Examples

4.1 The maximal definability structure
4.2 The structure of definable functions
4.3 Substitution structures

Logics of Metaphysical Definability

5.1 Logics of definability
5.2 The logic of logical definability
5.3 Soundness and Completeness
5.4 The logic of conditional definability
5.5 Some Remarks on Logics without Identity

1

A The Substitution Lemma

67

1 Introduction

Philosophy often finds itself in the business of explaining one sort of entity
— holes, numbers, knowledge, mental properties, or what have you — in
terms of others considered to be more basic. Presupposed in this endeavor
is the idea that reality has a hierarchical structure. Perhaps atoms are more
basic than tables and chairs, material objects more basic than the shadows
they cast, physical properties more basic than mental, the concrete world
more basic than the platonic, and so on. Perhaps it is also possible to reach
a point where no further reductions can be applied, in which case we reach
the fundamental objects, properties and relations: entities that cannot be
reduced to anything more basic.

One much-discussed account of the hierarchical structure of reality posits
and theorizes in terms of a notion of ground: a relation between facts or
propositions representing a form of metaphysical explanation — the fact
that p is true metaphysically explains why ¢ is true. In this paper I will
outline and formalize a different sort of approach to metaphysical structure
based instead on the notion of metaphysical analysis, found, for instance,
in Russell.! Some version of this idea is implicit in much of the history of
philosophy. The idea is that the less basic things can be metaphysically
defined, or analyzed, in terms of the less basic things. Thus, if knowledge can
defined from justification, truth and belief the latter are more basic than the
former in the relevant metaphysical sense, if the property of there being a
hole in can be defined from being perforated then the latter is more basic,
and so on. While the logic of grounding is reasonably well-understood—see
the classic treatment in Fine (2012))—Iless work has been done on the logic
of this alternative conception of the hierarchical structure of reality, and I
hope to fill this lacuna.

In Fine (2012) grounding is treated as a propositional connective rep-
resenting a relation between propositions. However, since knowledge, being
i pain, the number 7 are expressed using expressions from different gram-
matical categories, or “types’—an operator, predicate and singular term
respectively—and since the definiens and definiendum of a metaphysical anal-
ysis can belong to differing categories, we need something more general than
a connective to express this relation. We must conduct our investigation
within the framework of type theory. According to type theories, expressions

1See Russell (1940) §1.

have types which impose constraints on which expressions of the language
it can be combined with using the syncategorematic operations of the lan-
guage. A common form of type theory is functional type theory, that applies
to languages that at least have application of a predicate (or other functional
expression) to an argument as a syncategorematic mode of combination. The
functional types include types e and t, corresponding to the type of names
and sentences respectively, and given any two types o and 7, there is a func-
tional type o — 7: the type of expressions that when combined with an
expression of type ¢ via application produces an expression of type 7.

The objective of this paper is to propose a general and neutral framework
for thinking about propositional structure in which an account of metaphys-
ical definability can be given. Much attention has been paid, recently, to
the fact that certain very fine-grained accounts of propositional structure
are known to be inconsistent.? These results, however, do not show that all
structural notions are necessarily incoherent. The present approach extends
the project in Bacon (2019) of taking a notion that would be well-defined if
propositions, properties and relations were very fine grained, and instead tak-
ing that notion as primitive and theorizing in terms of its abstract properties,
allowing us to apply them contexts where less structure is being assumed.
The notion we take as our starting point is the notion of a logical form—
itself an instance of the more general notion of a propositional function. We
represent these by augmenting a model of type theory with a distinguished
class of functions between the domains representing the logical forms. On a
structured picture a propositional function could be thought of as a struc-
tured proposition some of whose constituents have been punched out leaving
“holes” where entities can be inserted — a function whose outputs range over
entities with a common structure parametrized by the entities filling certain
gaps — and a logical form a propositional function in which all constituents
have been punched out. While talk of logical forms, gaps and common struc-
ture seem to assume a very structured picture, one can take the notion of a
logical form as basic to be closed under certain general operations like com-
position. A given proposition need not in general have a unique logical form
— for instance, we will make space for views in which a proposition like Mary
loves John has at least two logical forms, one involving loves applied to these

2Russell (1903) appendix B, Myhill (1958). Recent discussions of the paradox and its
implications for metaphysics can be found in Dorr (2016), Uzquiano (2015), Goodman
(2017), Fritz (2021).

individuals in one order, and another in which s loved by is applied in the
reverse order. The logical forms give us parameterized classes of propositions
with “common structure”, but do so in a way that is quite liberal about what
one might take “structure” to be. For example, a fairly fine-grained concep-
tion of propositions will accept the existence of a propositional function that
maps Aristotle to the proposition that Aristotle is wise and Socrates to the
proposition that Socrates is wise, but they will not accept a function that
maps Aristotle to the proposition that Alexander is great and Socrates the
the proposition that there are at least seven planets. On the other hand,
there are more coarse-grained views that accept both functions.? Or, could
there be a propositional function that maps Aristotle to the proposition that
Socrates 1s wise, or do all propositional functions preserve the involvement
of Aristotle? Even coarse-grained accounts of propositional structure, such
as Classicism (see Bacon (2018), Bacon and Dorr (2024)), can admit log-
ical forms with interesting structure, even though one might have initially
thought that such views cannot make sense of the notion. This connects
with the debate over the existence of vacuous properties, like being such that
Socrates is wise.

The behaviour of the logical forms will thus tell us a lot about the gran-
ularity of propositions. At the coarsest end(s) of the spectrum any function
is a logical form and a given proposition has every logical form at once. At
the finest, every proposition has a unique logical form. In this way, one can
take a class of logical forms satisfying certain closure conditions to be simply
a way of describing a particular vision about the granularity of reality.

Logical forms are also key to analyzing metaphysical definability: we can
say a proposition, like Aristotle is old and Socrates is wise is metaphysically
analyzed into Aristotle, being old, Socrates and being wise if there is a logical
form that maps these arguments to this proposition (namely: x is F' and y
is G).

Before we begin, let me mention a couple of attitudes one might take
towards the proposed framework. Russell, Wittgenstein, and others took the
question of which propositional functions are logical forms to be a substan-
tive question; this position consequently would take questions about what is
metaphysically definable from what to be substantive. According to another

3An example would be S5 Classicism, described in Bacon and Dorr (2024). For any p
and ¢, the open formula (z = a Ap) V (z # a A q) corresponds to a propositional function
that maps a to p and everything else to q.

4See Dorr (2016), Goodman (2018) for views that reject such properties.

attitude, however, there is not an important question here. One could take
the basic logical operations to be combinators, or to be combinators plus
logical words, or to be these plus the primitives of geometry, and each would
give us a different notion of metaphysical definability, with none being more
theoretically central than the other. While I am inclined towards the former
attitude, the framework I am describing here does not presuppose it, and
will also be of interest to the pluralist about metaphysical definition.

2 Metaphysical Definability

The central notion of this paper is the notion of ‘metaphysical definability’.
We will build mathematical models of it, and provide logical systems axioma-
tizing it. Throughout we use the notation ¢ as short for a sequence t1, ..., t,,
{t} for the set {t1,...,t,}, and ¢ : p is short for ¢y : p1,...,tn : pp.

2.1 Languages

To fix ideas, we will start with the different but more familiar notion of
linguistic definition. Here we define a very general class of languages which
will be both used in explicating linguistic definition, and later as object
languages in which to theorize about metaphysical definition. First, some
preliminary definitions.

Definition 2.1 (Type assignment). A type assignment, I', is a finite se-
quence xy : o1,...,Ty, : 0, of variable type pairs, drawn from some infinite
stock of variables where no variables are repeated. We abbreviate this se-
quence as T : 0.

We will represent a typed language by a set of sequents of the form
I' = M : o representing the possible linguistic “propositional functions”,
when o = t, and the analogues of propositional functions for other types o.
The sequence of variables I' represents the order and types of the arguments
the propositional function receives, and M is an open expression of type o
involving variables in I', representing the output of the function when the
variables are replaced with the argument expressions. In general we write
M : o to mean that M is a term of types o — i.e. there is some sequent
of the form I' = M : ¢ in the language. The sequents of the language are
specified by a signature, 32, consisting of a collection X7 of primitive sequents

F ¢ : o for each type o, and a set of syncategorematic rules, =, generating
the remaining terms
F1|_A120'1 Fnl_An
r(Ty...T) Fra(Ar...Ay) sr(or...0n)

A rule consists of a mapping from type assignments to type assignments
[' — r(T') that is insensitive to permutations of variables, and a mapping from
finite sequences of types to types oy ...0, — r(oy...0,), as well as an n-ary
term forming operation, written ra(A; ... A,) above, where A enumerates
the bound variables the variable type pairs that appear in I'y ... T, but not
r(I'y...Ty).

Definition 2.2 (Typed language). The typed language determined by ¥ and
= is the smallest collection of sequents containing ¥ and closed under the
rules in =.

The most familiar kind of typed languages are A-languages, in which the
primary variable binding device is A-abstraction, and they will be our focus
in this paper; although we will at various points indicate how the framework
can be generalized to arbitrary languages determined by rules of the above
form. A A-language, L(A,=,3), is given by some set of rules A that tell us
how to build A-terms, a set of simple syncategorematic rules = than neither
bind free variables nor introduce them, and a set of primitive non-logical
constants X of different types. We will call A the A-signature, = the logical
signature or the rule signature, and ¥ the constant signature. Since the
syncategorematic rules r € Z neither bind nor introduce variables (i.e. 7(I") =
[for every type assignment) their syntactic behaviour can be identified with

a sequence of input types, o1, ...,0, and an output type 7: the rule lets us
combine expressions of types oy, ..., 0, to form an expression of type 7. We
write this r : 01,...,0, = 7. We assume that every language contains a

syncategorematic rule app : ¢ — 7,0 = 7, for each pair of types ¢ and 7,
that combines with two expressions of type (¢ — 7) and type o respectively,
F and a, to form an expression of type 7, app(F, a). Crucially, the string ‘app’
is not itself a meaningful expression of the language; and more generally the
notations we choose to represent other syncategorematic operations must not
be taken themselves to be meaningful expressions. If we follow the standard
convention of writing Fa instead of app(F,a) to represent the application
of a predicate to an argument, this confusion is easy to avoid because the

7

I'EM:o—r1 conc I'EM:o—1 AFEN:o a
DaioF-Ma:r AF(MN):r pp

const re=IN+My.0q,....l' FM,:0, les
n Ty T Fr(My,... Mo ru

Fc.o

Table 1: Basic rules for constructing propositional functions

syncategorematic notion of application is not notated at all — although this
strategy is not applicable to multiple syncategorematic operations without
introducing ambiguity into the notation.

Once we have the basic set of rules = and non-logical constants >, the
sequents of the language are generated by the rules in table 1 (one must
keep in mind that these rules are only applicable if the conclusions are se-
quents, and have no repeated variables on the left).° Here the rule “rules”
must be understood to respect the input and output types associated with
the rule r, and in const ¢ € ¥?. (In this table and henceforth, we adopt
the following conventions. By & we mean a sequence of types oy, ...,0,. By
o — 7 wemean (...(oc; — (09 = (... = (0, = 7)...))), and instead of
writing the latter formula we write 0y — ... — 0, — 7, where the brackets
are understood to be implicitly associated to the right. By Z, A we de-
note sequence of variables or terms. We will often abbreviate Az : o.M to
Az.M when the type o is clear from context, or irrelevant.) Languages will
also have logical vocabulary for stating things, summarized in table 2. The
syncategorematic rules uni, cond, and eq allow us to form truth-functional,
quantificational and equality claims: we have treated these syncategoremati-
cally to remain neutral about the higher-order existence of these operations.®

5The observant reader may notice that in the statement of merge, we have merged the
variable to the left, as opposed to the right. There is a question here about the appro-
priateness of such rules given different metaphysical theories of relations, but ultimately
boils down to a syntactic convention. See the discussion of left and right contraction in
Bacon (2023b) p259-260.

In the presence of cond and abs we can form a conjunction connective ApAg.(p A q).
Our treatment is not entirely neutral, because we have by fiat ruled out the possibility
that abstraction is not available in general, but that there exists a conjunction connec-
tive. There is no reason our treatment wouldn’t extend to this sort of language, but the
generality it would afford us to do so does not justify all the extra cases we would have to
consider in all our proofs.

I'HA:¢ AFB:t nd T'+A:0 AFB:o
T AF(A>B)t ©© T AF(A=,B)t ©d

M\zZHVy. Aly/7]

Table 2: Rules for constructing logical propositional functions

Tx:oym,AFM:p

riotzio id T,y:r,0:0,AFM:p switch
et _Laotdir
[z:io0,AFM:T vac TFazo Mo—r aPS

I x.0,Ay:0,AFM:T
U,z:0,AA-M[z/x][2/y]:T merge

Table 3: Structural rules for a A signature

Since formulas involving logical notions can all be defined up to extension
in terms of —,V, and =7, we take only these as primitive to save us some
cases in inductive proofs, although there is no reason we couldn’t have in-
cluded primitive rules for existentials, conjunction, and so on.(For technical
reasons we will occasionally consider languages that do not contain logical
propositional functions.)

Finally, the propositional functions of a language may be closed under
certain structural operations: switch, vac, merge, id and abs, summa-
rized in table 3. These are optional, and can be added or removed in
order to control which sorts of A\ terms are formulable. The A-signature
A C {switch, vac, merge, id, abs} determines which of the five optional
rules are included. A 0-ary syncategorematic rule in = has no input expres-
sion and outputs a term of type o, and so functions like a constant — we
will call these logical constants, in distinction from the non-logical constants
that are members of X.

Definition 2.3. Let A C {switch, vac, merge,id,abs}. By L(A,Z,%) we
mean the language obtained by the rules in table 1, table 2, the \-rules in
A from table 3, syncategorematic rules = and non-logical constants Y. By

9

L7 (A, 2, %) we will mean the same minus the rules for logical operations in
table 2.

All our languages have the syncategorematic operation of application.
But why must we have any syncategorematic rules at all? Couldn’t we just
have, say, a constant app: (¢ — 7) — 0 — 7 to do the job of application?
The answer is of course no: how would we combine app with its arguments
without a syncategorematic rule? Syncategorematic rules are unavoidable.
Moreover, symbols taken to indicate syncategorematic operations should not
be mistaken for meaningful expressions in their own right. This is what Rus-
sell says about the ‘is’ of predication. Russell’s view was the the word ‘is’ in
‘Socrates is wise’ does not itself contribute a constituent to the proposition
expressed by this sentence — it is genuinely syncategorematic. (This senti-
ment can be articulated without committing ourselves to Russell’s structured
view of propositions by simply saying that the word ‘is’ is not meaningful
expression on its own, but a word that indicates how the predicate and name
are combined.) The alternative picture is that ‘is’ is a further constant, a
binary relational expression, and the logical form of Socrates is wise is more
complicated: Socrates bears the instantiation relation to being wise. Rus-
sell rejects this on the grounds that a regress looms: if this proposition has
Socrates and being wise instantiating the instantiation relation, there would
need to be an even higher-order instantiation relation to hold them together,
and so on (this is related to Bradley’s regress, Bradley (1893)). We need,
at some point, a syncategorematic way of gluing predicates to their argue-
ments. Thus it seems that any language that contains simple predications
like ‘Socrates is wise’ should have a syncategorematic rule for application as
primitive, or as somehow defined.

The presence of the rule abs ensures that it is always possible to introduce
definitions by abstraction. An open formula in one variable, z : e = A : t, can
be thought of a set of closed sentences parameterized by the names in the
language—a propositional function—differing from one another only in which
name takes the position of x. For instance: Socrates is wise and Socrates is
old, Aristotle is wise and Aristotle is old, If definitions by abstraction are
permissible, we can, for every parameterized class of sentences (i.e. proposi-
tional function), augment the language with a new interpreted predicate, F'
(in this case, plausibly is old and wise) with the property that when every
you apply F' to a name a the result F'a is synonymous with the sentence
in our class corresponding to that name, A[a/x]. Observe that without the

10

rule abs it is not possible to form any A terms, and further choices about
which of the other optional rules, like switch and merge, to adopt, will not
make a difference to which closed expressions exist in the language. How-
ever, these choices will make a difference if other variable binding devices are
added to the language and, crucially, to which “propositional functions” (i.e.
sequents) there are. Languages with different open sequents have a different
structure, and may differ concerning what is (linguistically) definable from
what, even if they agree about which closed terms there are. Since we are
identifying a language with its set of propositional functions rather than the
set of closed expressions, two distinct languages can have the same closed
expressions. There are languages intermediate between those containing the
unrestricted abs rule, and those completely lacking it: one could introduce a
condition on the formation of A-terms, such as the condition that one cannot
bind into the scope of a syncategorematic rule. These intermediate languages
can be modeled in our framework, but for reasons of space we will not treat
them directly.

To illustrate, let’s consider some examples of languages with different syn-
categorematic rules. According to the logical atomists (Wittgenstein (1921),
Russell (1940), Ramsey (1999)), logical words such as ‘and’ and ‘not’ are
like ‘is’. There is no such thing as an operation of conjunction that is a
constituent of a proposition A A B—conjunction is a syncategorematic oper-
ation like application, that directly combines with A and B to form AA B, in
exactly the same way that predicate and argument are directly combined.”
The A symbol is just punctuation, like juxtaposition is for application, and
doesn’t denote a propositional constituent. Thus conjunction, for instance,
should be treated as syncategorematic: A : t,t = t € =Z. But in order to
prevent us reintroducing a defined conjunction connective, we must modify
the A signature. For if id and abs are both in A, we can obtain a conjunction

“Why might one be tempted to adopt the logical atomist picture of logical constants?
One argument comes from the idea that logic is what is true purely in virtue of logical
form: what is true no matter which constituents are replaced. If conjunction, disjunction,
and so on, were logical constituents and could be replaced there would be no logical laws
in the propositional calculus.

11

expression as follows:

pitkp:t q:tkq:t
p:t,g:tEpAqg:t
pitEANpAqg:t
FApgpAg:t

It is easy to see that removing id blocks the formation of a conjunction
connective, but allows things like the property conjunction, Azy.(Fz A Gy),
of two predicates F,G : e — t. Removing abs blocks the formation of
all A-terms, but then one could mitigate this by introducing a restriction of
abs, that permits A\ abstraction when binding happens outside the scope of a
conjunction. At any rate the first strategy, which is treated straightforwardly
in our framework, provides us with our first example of a language:

Example 2.1 (Logical atomism). The logical atomist language is the lan-
guage L(A,E,X) where A = {switch, vac, merge, abs} and = contains the
syncategorematic rules:

app’” 10— T,0 =T
N:it,t =1

Vit,t =1

-t =1

In this example we have set aside the logical atomists syncategorematic
treatment of the quantifiers, which we will come to later.

Consider next the “positionalist” view about relations (Fine (2000)).
Many philosophers have expressed scepticism about the existence of con-
verse relations.® According to the positionalist about relations, there aren’t
two relations, loves, and is loved by, but a single loving relation with two po-
sitions into which two arguments can be plugged in two different ways. The
positionalist therefore will want to reject a language that lets one construct
two distinct relational expressions of this sort.

8Fine (2000), Williamson (1985), Dorr (2004) for relevant discussion.

12

Given the rule switch it is possible to generate a converse to any relation,
L, as follows
FL:e—e—t
x:ebLr:e—1
riey:eb Lyy:t

y:ex:ek Lyy:t
yrekF A x.Lxy:t
F Ay e.Lxy @ t
So the positionalist might want to work in a A-signature without switch. Sim-
ilar considerations might push one to reject the existence of reflexized unary
properties, like loves oneself, in favour of a single binary relation in which

the same argument can be supplied twice, or to reject vacuous properties like
being such that snow is white.

Example 2.2 (Positionalism). The basic positionalist language is the lan-
guage L(A,Z, %) where A = {abs,id, merge, vac} and X contains a binary
predicate L (L :=e —e—1).

These two examples illustrate the sort of generality that our treatment of
languages has. It should be noted that all the languages we have described
not only contain application, but also composition as a defined syncategore-
matic notion, like = A\p.(=(0(=p))), and a more general mode of combination
that simultaneously generalizes application and composition called complica-
tion (Bacon (2023a)). One could relax even this by treating treating variable
assignments as built up by a possibly non-associative operation of combining
pairs of variable assignments, but we will not explore this level of generality
here.”

2.2 Linguistic definition

In this section we provide a suggestive model for metaphysical definition, the
linguistic notion of definability. Key to this is the notion of a logical form
and a propositional function, given a language £(A, =,). Again, the notion
plays a leading role in the logical atomists’ philosophy of logic. Take the
proposition Socrates was before Aristotle. The constituents of the proposi-
tion are Socrates, Aristotle and the relation before. The proposition also has

9See the discussion in Bacon (2023b) p209 and 221, Restall (2000).

13

a logical form, which tells us how these constituents are put together. Rus-
sell defines it as what is common to all propositions obtained by uniformly
substituting the constituents of a proposition for other constituents of the
same type. In this case the form may be represented as ‘x Rs y’ — it is the
instantiation of a relation by two arguments.

Let 1 : 0y...2, : 0, F C : 7 be a sequent of a language L(A,Z,).
For any sequence of sequents I'; - A; : o; for i = 1...n, we write '
C[A/7] for the sequent obtained by replacing each occurrence of x; with A,
in C'. The Substitution Lemma, proven in the appendix, ensures that this is
also a sequent of L(A, =,). Following Russell’s idea we reach the following
definition of a logical form, and a propositional function.

Definition 2.4 (Propositional functions and logical forms). Suppose that
X1 01...x, 2 0y B C 1 T is a sequent of the language L(A,Z,%). The
Russellian function corresponding to this sequent is the function r defined as
follows:

ri LA S) x .. x LA, E,8) = L7(A,E,5)

r(Ay,..., A,) =C[A/7].
We say that v is a Russellian function in the constants {ci,...,c,} iff if
x1:01...2, 0, B C 7 is a sequent of the language L(N,Z, {c1, ..., cn}) —
i.e. the only constants in C' are ¢y ...c,. We say that r is the logical form
of C iff C has no constants — i.e. r is a Russellian function in L(A,Z,0).
If C has type t then we call the corresponding notions a propositional logical
form, and propositional function.

One can imagine a propositional function as the result of “punching out”
some of the occurrences of constants (variables), in a formula A, to yield a
formula with “holes” that can be filled in different ways with other expres-
sions of appropriate types to form the result of applying the propositional
function to those expressions. A Russellian function is defined in the same
way except that A can be an expression of any type. A logical form is a propo-
sitional function in which all the constants have been punched out leaving
only the most general form of the expression. NB: if the language contains
switch, there actually two distinct logical forms corresponding to a single
term like Rxy, namely the the logical forms given by z : o,y : 7 = Rzy : t,
and y : 7,x : 0 b Rxy : t. These logical forms are very unfamiliar from a
structured point of view, but our goal here is not to capture the structured

14

view specifically, but to develop a framework that is neutral about the nature
of propositional structure and logical form.

Let us now discuss the notion of linguistic definability. There are, of
course, purely syntactic notions of definability — relations between uninter-
preted strings — that one could study. Our target, however, is a relation
between interpreted expressions of an interpreted language. An interpreted
language comes equipped with a notion of truth simpliciter that applies to
sentences of the language, and a relation of synonymy between (possibly
open) expressions of the same type, governed by the following:

e Synonymy is an equivalence relation.

e Synonymous terms may be substituted for one another while preserving
synonymy, additionally preserving truth if the target of the substitution
is a formula.

Notice, in particular, that I have allowed the relation of synonymy to hold
between open expressions, and that open expressions may be substituted for
each other even in contexts in which free variables in those expressions get
bound. Thus, if ‘x is a bachelor’ is synonymous with ‘x is a man and z is not
married’, then ‘dz.x is a bachelor’ is synonymous with ‘dx.z is a man and x
is not married’.

According to this operative class of notions, the interpreted predicate
‘vixen’ can be defined from ‘female’ and ‘fox’ on the assumption that ‘vixen’
is synonymous with ‘female fox’, even though there is no obvious purely syn-
tactic connection of definability between these strings. In what Russell calls a
logically perfect language, one would not have simple expressions, like ‘vixen’,
corresponding to logically complex properties — language would reflect the
world in the sense that the simple expressions (constants) correspond one
to one with the simple, or fundamental entities. But even in logically per-
fect languages we might still have non-trivial relations of synonymy between
complez expressions. We will assume, minimally, that gn-equivalent expres-
sions (open or closed) are synonymous, and leave open what further instances
of synonymy between complex expressions obtain (a natural strengthening
is that logically equivalent terms are synonymous'?). Thus, for instance,

10This in essence delivers an interpreted language in which Classicism holds. Assume
that substitution of synonymous terms preserves truth, even in contexts where free vari-
ables in the terms being substituted can get bound. Whenever A <> B is a logical truth,

15

Az.(Fz A Gz)a is synonymous with Fa A Ga.'!
With notions of logical form and propositional function at hand we may
introduce various different notions of linguistic definability.

Definition 2.5 (Logical definability.). A sequence of (possibly open) terms
A=Ay, ..., A, logically defines another, B iff there exists a logical form r
such that r(Ay, ..., A,) is synonymous with B.

(when A and B are open expressions, the synonymy of r(A4) with B relies
on our notion of synonymy for open terms.)

For logical definability, the order and number of occurrences of an element
in A may matter: in some (but not all) languages, the sequence ‘Mary’,
‘loves’, ‘John’ defines ‘Mary loves John’, but not ‘John loves Mary’. This
kind of definition is possible only if there is a propositional function X : e —
e—ty:ez:ek AX,y,z|:tin the language such that A[L/X ,m/y, j/x]
is synonymous with Ljm, using L, m and j for ‘loves’, ‘Mary’ and ‘John’.
In languages that contain id and switch, in particular, we have the sequent
X:e—e—ty:e z:ek Xzy:tthat serves this role.

Similarly, in some interpreted languages the sequence ‘Mary’, ‘loves’ de-
fines ‘Mary loves’ but not ‘Mary loves Mary’. In languages that contain
merge, there is a propositional function X : e - e - t,y : e b Xyy : ¢
which has the feature that it maps L and m to Lmm. Lastly, in some lan-
guages every element in A must be used in a definition: thus ‘Mary’, ‘loves’,
‘John’ does not logically define ‘Mary loves’. But if the language contains
vac then we have the propositional function X :e e —t,y:e,z: ek Xy
which permits this definition.

These languages differ over which propositional functions are available,
and so are giving us different models of linguistic definition and propositional
structure. In some languages things like order and constituent count do not
matter at all. These will contain the logical form corresponding to ‘... loves

. in addition to the logical form ... loves ___" — in the latter there are
two gaps, which can be filled with different names, and in the former there
is only one and putting a name into that gap produces a sentence with two
occurrences of the name.

¢

then C' <+ C[A/B] must be true (it must have the same truth value as C' <+ C. And
Classicism can be axiomatized by all truths of this form (see Bacon and Dorr (2024)).

UThe notion of Bn-equivalence is standard — a definition can be found in Bacon (2023b)
§3.3, definitions 3.5 and 3.6.

16

Note, finally, that there is an important difference between a propositional
function with gaps p and a relation of type p — t. The kind of Tractarian
that rejects Abs will accept the propositional function p : ¢ = —p : ¢ but
not the existence of a unary operator = = : ¢ — t. One might have thought
that B is logically definable from Ay,..., A, if there is a closed logical n-ary
predicate P such that PA; ... A, is synonymous with B, but this is not so
in general (cf Bacon (2020) §3.3 remark 3.1). For the Tractarian we just
described Socrates is not wise is definable from Socrates is wise, but there
is no logical operation mapping the latter to the former. It is only in the
presence of Abs (and the synonymy of fn-equivalents) that propositional
functions are equivalent to closed expressions, and that such a reduction
would be possible; see the principle Decomposition discussed in section 5.2.

Logical definability corresponds to the idea that we can define one thing
from another in strictly logical terms — just using the syncategorematic
operations of the language. But we might also wish to formulate, for example,
the claim that mental predicates can be defined from some other things in
purely physical language: whether there is a Russellian function involving
only physical constants that lets us define mental properties from, say, names
of particular physical systems.

Definition 2.6 (Conditional definability.). A sequence of terms A defines
C conditional on the sequence B when there is a propositional function r in
the elements B (i.e. the propositional function involves only elements of B
in any order any number of times) such that v(A) is synonymous with C.

The rough idea of conditional definability is that C' is definable from A
relative to a language in which the elements of B are treated as though they
were logical operations in a new language. Observe that logical definability
is a special case of conditional definability in which the sequence B is the
empty. One might have thought that, conversely, conditional definability
can be defined in terms of logical definability: A conditionally defines C
on B when D logically defines C for some sequence D which contains A as
a subsequence, and whose remaining elements belong to B. However, in a
language without id, A does not logically define itself, since the candidate
propositional function that consists of just a gap ‘...”, of the same type as
A, does not exist; thus in these languages conditional definability must be
taken as an additional primitive.

Finally, there is also a notion of priority analogous to that found in Dorr
(2016): if it is possible to define one expression from some others using any

17

expressions whatsoever, we say the latter expressions are prior to the former.

Definition 2.7 (Priority). . A are prior to C' when some propositional
function maps A to C': i.e. C s conditionally definable from A conditional
on some sequence of terms B.

Given these notions, other concepts of interest can be introduced, such
as the notion of purity studied in Bacon (2020).

Definition 2.8 (Conditional purity and purity). . C is pure conditional
on the sequence of closed terms B iff € (the empty sequence) conditionally
defines C' on B. C s pure simpliciter when it is pure conditional on €.

In languages where id, abs € A, one can construct combinators which are
the paradigm examples of pure terms. Examples include the I combinator,
Ar.x : 0 — o, C' combinator, AXyz.Xzy: (c -7 — p) > 7 — 0 — pand
the W combinator, AXy.Xyy.

2.3 Metaphysical definition

Our target is the notion of metaphysical definition, not linguistic definition.
While bearing important similarities to the linguistic notion of definition,
metaphysical definability is a higher-order relation whose relata are individ-
uals, properties and relations, and so on, as opposed to linguistic items like
names and predicates. Having said this, we will often draw on the linguistic
notion for intuitions:

Example 2.3. The property of being a bachelor can be defined from the prop-
erty of being a man, the property of being married and negation, \x.(Mz A
—Uzx). The impossibility operation can be defined from the negation operation
and the possibility operation (Ap.—~>p). The proposition that Socrates is wise
can be defined from Socrates and is wise (Fa).

While these examples of metaphysical analysis hew closely to the linguis-
tic precedent — application of a predicate to an argument, composition of two
operators and so on, some metaphysical definitions are not naturally modeled
on any kind of linguistic definition.

Example 2.4. Perhaps a hydrogen atom may be metaphysically defined, in
the operative sense, from the proton and electron that compose it, even if
there aren’t analogues of linguistic modes of combinations that produce the
one from the other.

18

If this is so, perhaps the merelogical sum operation, (...+ ___) that has
two gaps for individuals, and returns an individual, should count as a meta-
physical logical form.

Example 2.5. A random shape of infinite complezity, such as the coastline
of Great Britain, may be metaphysically definable from the Tarski-Hilbert
geometric primitives, congruence and betweenness, even if there is no finite
linguistic definition of the corresponding shape predicate from the congruence
and betweeness predicates. In some sense, once you have fixed the facts about
the Tarski-Hilbert relations you’ve fized the facts about all shapes. See the
discussion in Bacon (2023b) [REF].

In this case, there might be a logical form mapping the two Tarski-Hilbert
relations to the property of being Britain-shaped. We will show how one
might model these examples in section 4.3.

Another key point is that, unlike the linguistic notions of definition,
metaphysical definition has to be taken as primitive. In section 2.2 we de-
fined an expression, C, as logically (linguistically) definable from expressions

By, ..., B, iff there exists a certain logical form — a way of constructing
C from By,...,B, using only the syncategorematic operations in the lan-
guage. The construction of C' from By, ..., B, can be arbitrarily long, and

may use arbitrarily many syncategorematic operations. In higher-order lan-
guages it is possible to quantify into different syntactic positions, but it is
still not possible to generalize over syncategorematic operations, or construc-
tions. There are three possible ways this may be overcome, but only the last
is fully general. The first is available if there is a specific finite number of
possible ways to construct something of C's type from things of the types of
By, ..., B,, for then the existential can be expressed with a finite disjunc-
tion. The second is available if all syncategorematic operations “correspond”
somehow to something of a given type so that they can, in effect, be quan-
tified over (see the notion of A-closure in section 3.3, and the corresponding
axiom Abs in section 5.2). For instance, with id and abs there is a term
AX M y. Xy : (0 — 7) = 0 — 7 corresponding to the syncategorematic notion
of application. In this case, one instead needs a primitive predicate saying
which entities “correspond” to syncategorematic operations. If neither of
these cases obtain it is not possible to provide an explicit definition of an
analogous notion of metaphysical definability in a higher-order language —
we cannot quantify over the “possible ways” of constructing C. The third
way, the approach adopted here, is instead axiomatic. We will take the

19

notion of metaphysical definability as primitive and provide principles gov-
erning it that entirely capture the intended notion. Our theorizing about
this primitive may be guided by the pretense that it is possible to quantify
over syncategorematic operations, but this should be taken with a pinch of
salt—the axioms must ultimately be evaluated on their own terms. For each
type o and sequence of types p = p1, ..., pn, we need a further pair of variable
binding syncategorematic devices D?, and <77

® By...B, >0 . C says that entities By,..., B, (of types pi,...,pn)

Ty..T

metaphysically define C'.

o Bi...B,>414mp7 (' says that entities By, ..., B, (of types p1, ..., pn)

T1...T

conditionally metaphysically define C' conditional on Ay,..., A,,.
e B <77 (C says that B is metaphysically prior to C.

When B; ... B, and C are open and contain any of the variables x; . .. xj free,
we can think of these terms as Russellian functions in these variables. These
variables get bound in the corresponding definability claims, and we should
understand them as saying that the potential propositional function C[Z] can
be defined from (is prior to) the propositional functions B;[Z] ... B,[Z]. In
model theoretic terms this means there is a propositional function such that,
maps B ... B, to C under all possible values of . (The linguistic analogue of
this feature is that our notion of definability employed a notion of synonymy
between open term.)

These expressions can be added to the language by the rules in table
4 in the case that id € A. In each case, we understand that T contains
only free variables appearing in Ay,..., A,, B, and in the last case, no free
variables appearing in C ...C,,. In the case that id ¢ A we need a slightly
more complicated statement of the rule, that is equivalent to the above when
id € A. This is because we would like a free variable to appear on its own
as an argument of a definability claim — such as in the claim x >J z — and
this is not obtainable from the above rule without id since the variable x is
not a term.

I FA r,FA, Y+ B
A}_tl...tkDEB

where A is the sequence s; ... s, where s; is either a variable or the sequence
of variables appearing in I';, and ¢, is s; if s; is a variable, and ¢; is A, if s; is
[';. In either case, we call the resulting language £L(A, 2, Y).

20

[yFAvio . Tyul Ao, AEB:T Def I'+A:.c AFB:r Prior
I..T,A\zZ+A,.. A, > B:t I A\z+-A=Z"B:T

I'iFA0p.. . T FA,:0p Ejl—Cl:ﬁ Ecml_g:;a:m AFB:T CDef 7 not free in C'
Fll“nAElEm\mFAlAnDEl B:t

Table 4: Formation rules for definability primitives

A final point on our primitive of conditional definability. One might have
thought there is a more general notion of propositional function: a proposi-
tional function constructable using the logical forms along with entities and
a number of propositional functions.

B,...B, D%l“_g:ﬁ” C says that entities By, ..., B, (of types p1,...,pn)
conditionally metaphysically define C' conditional on the propositional
functions ¥, 1 p1 F A1, Y P T A

Here 7, are a sequence of free variables appearing in A; and this expression
is understood to bind them. This more complicated primitive can easily
modelled in the present framework. However, my view is that this primitive
does not add important expressive power to our theory: whatever can be
defined from B conditional on some further propositional functions, r; ... r,,
can be defined from B conditional on some entities (i.e. 0-ary propositional
functions). This is because all propositional functions, including ry, ..., r,,
can be obtained by filling the gaps in a logical forms with constituents, so
these constituents conditionally define anything we can define with those
propositional functions.

Could there be propositional functions that are neither logical forms, nor
obtainable from them by filling in the gaps of a logical form with constituents?
I think not: if we start off with a list of logical forms and encounter a propo-
sitional function that cannot be constructed by filling the gaps of that logical
form with constituents, then I think we should say that our original list was
incomplete and that we have discovered a new logical form.

21

3 Models of Metaphysical Definability

Despite being unable to explicitly articulate what it takes for one entity to be
metaphysically definable from some others, we can still test our axiom system
for correctness by supplying it with an intended model theory modeled on
the linguistic notion of definability — a model theory that does involve quan-
tification over all the possible Russellian functions — and proving soundness
and completeness of the axiom system with respect to this intended model
theory.

In this section we will make heavy use of the following convention for
denoting functions.

Definition 3.1. Given two functions f : A — B, g : A" — B’, we write
fxg:Ax A" — B x B for the function (a,a’) — (fa, ga’).

More generally we write f; X ... X f, : A1 X ... x A, = B; X ... X B, for
the function that maps a;...a, — (fia, ..., fnan).

3.1 Definability structures

Given a sequence p = py, ..., pn, we write D? for D x...x D?* and A — B
for the set of functions from A to B. Here is the key definition of the paper.
When € is the empty sequence D¢ = {x} is a singleton whose only element
we will label x*.

Definition 3.2. A definability structure is a triple (D', R, app’) where D
is a set for each type o, RS C DP — D is a collection representing the
logical forms — entities of type o with “gaps” of types p — and app?” :
D77 x D% — D7 is the function representing application. A definability
structure must be subject to the following constraints

comp Wheneverr € RZ _ |
01060,

Cl,ndpER%7ro(ﬁ§1 XPXHEQ)ER;IW

Junc For any logical form v € R~ app o (r x id,) € R7,.

We call (D, app) the applicative structure underlying a definability structure
(D, R, app).

Henceforth we will write D for |, D” and R for J,, R when no confusion
arises, and we will sometimes use the following convention:

22

Convention 3.1. If ' =z, : p1,...,xy, 1 pn 1S a context we will write Ry for
RZ and D for DP.

Let’s begin with some remarks on definition 3.2.

(comp) encodes the idea that if you have a Russellian function r that has
a gap of type o, and you have another Russellian function p of type o (that
is, would yield an entity of type o when its gaps are filled), then there is
another Russellian function obtained by plugging the gappy p into the o gap
r to make another Russellian function that has the gaps in r, but in place of
o gap has p, along with its gaps. We can denote this r o (ﬁgl X Pp X ﬁgQ),
where id> = id,, x ... xid,,, r € Rglagn’ and p € RZ. We will call this
operation parallel composition.

As a concrete example, consider the propositional function = believes that
p, which has two gaps: one for an individual (represented by a circular hole
below) one for a proposition (represented by a rectangular hole), and y loves
z which has two gaps for individual (represented by circular holes). By
the operation of parallel composition we get another Russellian function z
believes that y loves z with three individual holes, represented by the lower
diagram below:

[o C}}oo

0 (OO

For the purposes of illustration we have adopted a diagrammatic represen-
tation that suggests that properties and relations are structured entities,
however no such assumption is built into the formalism. It is clear that if
the Russellian functions are closed under parallel compositions, they are also
closed under all precompositions of the form: ro(idxr; xid...xid xr, xid) €
R%r--ﬁn)'

(func) concerns logical forms of simple subject-predicate expressions: if
F'is a logical form of an entity of typec — 7, then there is a logical form of
entities of type 7 obtained by applying F' to a gap x of type o: Fx : 7 is a
logical form. The result is a logical form of type 7 which has gaps of type p
and now also 0. Mathematically this checks out: app o (r x id) is shorthand

23

for the function de — app(r(d),e) — the function that takes a sequence de
fills out the logical form of a o — 7 entity with d to obtain an actual entity
of type ¢ — 7, and applies it to e.

It is worth noting that these two conditions, (comp) and (func), entail a
stronger condition. Given two logical forms, r of type o — 7 and a of type o,
there’s intuitively another logical form obtained by ‘applying’ r to a. This is
the logical form that has a sequence of gaps matching the gaps in r, another
sequence of gaps matching the gaps in a, and when the gaps are filled with
entities of the appropriate types, yields the result of filling the gaps in r and
a with those entities, and applying the result of the former to the latter.
However, note that one does not need to think of entities as structured with
holes in certain orders in order to think that Russellian functions are closed
under application in this way.

Definition 3.3 (Complication). The complication of r € RS " anda € R7 ,
is the function app o (r x a) = dyd, — app(r(d,),a(ds)).

(It is called complication because it is a generalization of composition
and application: when p; = p, = € we have something that amounts to
application, and when p, = € and p, = 0 we get composition.)

Proposition 3.1. Definability structures are closed under complication: if

r € RS~" and a € RS, then appo (r x a) € RT__.

Proof. r € RS~ and a € RJ . By (func) app o (r x id) € R7. By (comp),

1 P10 "

appo (r x id) o (id x a) =appo (r x a) € R -

A final note on some limitations of our framework. We have modeled
logical forms (and propositional functions) as functions. This means that if,
whenever the gaps in two propositional logical forms are filled with the same
constituents the same propositions result, then these are the same logical
forms. On a strictly structured view this principle seems obvious: every
proposition has a unique logical form, so no two logical forms can yield
the same proposition when saturated with any constituents, let alone all.
However, our framework is neutral on the strictly structured view, and is
compatible with views in which a single proposition can have multiple logical
forms. For instance, John loves John may be decomposed into a logical
form involving a binary relation applied to two different arguments or to a
single argument twice (compare with the linguistic logical forms X : e —

24

e > ty:ez:ek Xyzand X : e - e = t,y : e b Xyy). But what
happens if it just so happens that there aren’t, say, many individuals around
and two distinct logical forms are consequently indistinguistable by any two
actually existing individuals. Perhaps we want to say the two logical forms
corresponding to a ternary relation, e.g. z:e,y: et Rrzy and x : e,y : el
Rxyy, are different even if there is only one individual, a, and the outputs
of these logical forms are always the same, namely Raaa. In this case, we
want to say that the logical forms are different because it is possible that
there be two individuals, and in such a case they would be functionally
different. It is thus necessary to revise the framework by weakening the
condition of functionality of logical forms. It is actually not too hard to do
this by replacing set-theoretic functions with arrows in a “monoidal closed
category” .12 However the intended audience for this paper will likely be less
familiar with he relevant category theory than the set-theoretic treatment we
purue here, so this seems like a reasonable restriction.

Another simplifying assumption I have made is that logical forms are
finitary: they are m-ary functions. Someone who thought that propositions
could have infinitely many constituents may wish to countenance infinitary
logical forms, in which case we would allow p to range over infinite sequences
in our specification, so that RZ will contain infinite arity functions r : DP —
D?. Doing so does not change much, although it does slightly effect our
discussion of substitution structures in section 4.3.

Lastly, our treatment of logical forms is based on A-languages, which
application as the fundamental syncategorematic operations and optionally
A-abstraction and quantification as the primary variable binders. We might
introduce a more general notion of definability structure, for a given signature
of arbitrary variable binding operations, that would come, as before, with sets
RZ closed under parallel composition, but also equipped with a collection of
manipulations of logical forms, represented by functions s of the form:

. T1 On T
S.Rpl x...XRﬁn—>R9

where @ is a subsequence of p, ...7,. Note that our notion of a definability
structure is given by a single operation on logical forms, s : RZ™" — R7
where s(r) = app o (r x id).

12These play an important role in categorical approaches to substructural logics. See
Lambek (1968).

25

3.2 Definability structures for \-signatures

Let’s now turn to definability structures that are appropriate for various -
signatures A C {id, switch, vac, merge} interpreting languages that contain
A-terms formed using the relevant combination of rules from tables 1-3. A
structure is appropriate for id, switch, vac, merge or abs when it satisfies
the condition, to be specified shortly, corresponding to the rule. It is a A-
definability structure, when it is appropriate for each element of A. Here we
discuss the conditions for id, switch, vac and merge; we save the condition
for abs until the next section

Definition 3.4. When * € {id, switch, merge, vac}, a *-definability struc-
ture, (D, R,app) is defined as follows:

o [fx =id then id, € RJ where
id, =a+—a:D°— D°

where

If ¥ = merge and r € R’

T oop, Lhen merge; o (r) € RS

p P10P2

merge, . (r) := abc — r(ablc).

if x = switch and r € RZ where

P10T P2

then switchg ,.5,(r) € R

P1TOP2

switch; .5, (r) := abed — r(achd).

If x =vac andr € R} where

75,0 vac(r) € Ry

P10P2

vac;, 5,(r) = abc — r(ac).

Henceforth we will omit some, or all of the subscripts on id, switch, merge
and vac when no confusion should arise.

These ensure that propositional functions are closed under whatever ma-
nipulations on gaps we are allowing. The first condition concerns whether we
think that a gap on its own counts as a Russellian function. An affirmative
answer is modeled by A-signatures where id € A. (Note that in A signa-
tures with id and abs, it is possible to type the identity operation - Az.z.)
A gap on its own is represented by the identity function id : D7 — D°.
The remaining conditions ensures the Russellian functions are closed under
switching gaps, merging them, and so on, depending on what the A-signature
contains. So, for instance, if there is a propositional function mapping a pair

26

of elements a,b € D¢ to the element of D! representing the proposition that
a loves b, and our theory of propositional function gaps tells us gaps can be
switched, then there is another proposition function mapping the pair a, b to
the the proposition that b loves a.

3.3 A-closed Definability Structures

In some of the languages we have defined (L(A, =,) where abs € A) there
are linguistic logical forms involving A-abstracts. Here we investigate the
metaphysical analogue of these logical forms.

Consider a logical form p of a proposition that contains a gap for an
individual. Does there correspond to this logical form, another logical form,
Ap, for a property of individuals that has all the same gaps as p except for
the gap for the individual, and which has the feature that if we filled the
gaps in Ap and applied the resulting property to an individual we would get
the same result as filling the gaps in p in the same way and filling the final
gap with the same individual. More generally, is it true that for every logical
form of type 7 with gaps of type po, there is a corresponding logical form
of type ¢ — 7 with gaps p? We can formalize these ideas in the language
of definability structures: Suppose (D, R,app) is a definability structure.
Given f : DP — D7, we define Af : D? — D77 by setting (\f)d to be the
unique element of D7 such that app((Af)d,e) = f(de) for every e € D
if it exists. Af is undefined otherwise.

Not everyone should answer this question affirmatively. As mentioned
previously, the Tractarian account of the truth-functional connectives adopted
by many logical atomists might reject this, since the symbol —, unlike a name
or a sentence, doesn’t stand for anything in reality — it is more like punctu-
ation.'® For any proposition there is a further proposition, its negation, but
that doesn’t mean there’s any entity of type t — out there corresponding to
negation. Negation is treated completely analogously to predicate applica-
tion. Thus there will be a propositional function of negation (linguistically
represented by the sequent p : ¢t - —p : t) obtained by simply punching gaps
from a negated proposition, but no corresponding entity of type ¢t — ¢ (i.e.
nothing linguistically represented by = Ap.—p : t —).

Definition 3.5 (A-closure). Suppose that (D, R,app) is a definability struc-

13Classic statements of this view can be found in Wittgenstein (1921), Russell (1940)
and Ramsey (1999).

27

ture, and RS C DP — D for each p and 0. Then (D, R,app) is A-closed
iff:

whenever v € RZ, there is a unique function Agr € RS such that
r(de) = app(Agr(d),e) for every d € DP, e € D’ (i.e. T = app o
()\RI' X ld))

(Note that the partially defined operation A is indexed by a set of func-
tions R and may be well-defined on some sets R and not others. This can
happen when R contains too many functions: e.g. if RJ contain a func-
tion p that does not correspond the applicative behaviour of any element
D777 Agp € D777 will be ill-defined. Or, perhaps Agp is well-defined but
Asp is not well-defined because S contains several functions satisfying the
A-condition when R contains only one. When no ambiguity presents itself,
however, we may drop the subscript from \.)

A-closure tells us that we can perform the metaphysical analogue of \-
abstraction to logical forms to produce other logical forms. There is, in fact,
a stronger condition we might wish to impose: namely that A-abstraction
on arbitrary propositional functions is well-defined. A propositional function
is a logical form in which entities have been inserted into some of the gaps,
and the closure of logical forms under A-abstraction does not guarantee the
closure of propositional functions under the same operation. We will consider
this issue in the next section. This further issue will become important when
we want to interpret a language L£(A,=,Y) possibly containing non-logical
constants and A-abstracts in a definability structure.

A-closure implies the converse of our condition (func)

Proposition 3.2 (Weak A-closure). Let (D, R,app) be a A-closed definabil-
ity structure. Then, for any functionr : D? — D77 ifappo(rxid,) € RZ,
thenr € RZ™7.

Proof. uppose r is an arbitrary function such that p := appo(rxid) € Risa
logical form. Then Ap € R is also a logical form, and since appo (Ap x id) =
p = app o (r x id) € R the uniqueness of Ap ensures that A\p = r, so r is
also a logical form. O]

A A-closed definability structure could be defined as one satisfying both
(func) and (A-closure) without including (comp), since the latter can be
derived from these two conditions.

28

Proposition 3.3. Any structure (D, R, app) satisfying (func) and A-closure
also satisfies (comp).

A-closed definability structures are nice because the logical forms of enti-
ties of arbitrary types are determined by the logical forms of propositions and
individuals — you only need to specify the base types. Suppose that R and
S are two candidate sets of logical forms over the same applicative structure
(so we are talking about two definability structures of the form (D, R, app)
and (D, S, app)). Then we have a conditions for checking when they are the
same: they agree on the logical forms of the base types.

Proposition 3.4. Suppose that (D, R,app) and (D, S,app) are \-closed
structures over the same applicative structure (D, app). If for every p, RE =
S5 for base types k = e,t, then R =S.

Thus the logical forms at any type are completely determined by the
logical forms of sentences and singular terms. Actually A-closed structures
are also completely specified by what they count as pure; i.e. metaphysically
definable from nothing.:

Proposition 3.5. Suppose that R and S are both are \-closed, and R? = S?
for every type o, then R = S.

Proof. In this case the proof is an induction on the length of p. The case
where the length of p is zero is given by assumption. If r € R7 then Ar €
RZ™T and we can apply the inducti\{e hypothesis, to get that Ar € S77.
(func) then tells us that app o (Ar x id) =r € 57. O

Finally, in weakly closed A-closed structures, if we want to check that a
structure satisfies the merge, switch or vac closure conditions we only have
to check that the logical forms of propositions and individuals are closed
under those conditions.

Proposition 3.6. If Rtﬁ and R are closed under merge, switch or vac,
then this holds for all types and the the definability structure is closed under
merge, switch or vac respectively.

Proof. To illustrate the proof strategy we show the case of merge,,,. It’s
an induction on the structure of the types, with the base case given by the
assumption. Suppose for induction that RZ is closed under merge for any 7,
and that r € R7,;7. By (func) we know that app o (r x id) € R, . By

29

the inductive hypothesis merge(app o (r x id)) = (a,b) — app(r(a,a),b) =
app o (merge(r) x id) € R7,, . Finally by weak A-closure (proposition 3.2)
merge(r) € 1%,/ as required. O

3.4 Conditional Definability Structures

A definability structure tells us which functions are logical forms. A condi-
tional definability structure, by contrast, tells us which propositional func-
tions can be constructed from some set of entities. When X is a set of
possible constituents, and R the set of logical forms we will write R[X] for
the propositional functions with constituents in X.

Given some elements d = d;...d, € DP in some definability structure
(D, R,app), there should be another definability structure based on (D, app)
of Russellian functions involving d;...d,. And moreover, there ought to be
a “minimal” one, that doesn’t involve any more Russellian functions than it
needs to. That is, we start of with some functions that represent the logical
forms: those functions that can be expressed using the syncategorematic op-
erations of some chosen language £(A, =, %) (which correspond to the open
expressions of L(A,Z,0)). Now suppose we want to ask what is metaphysi-
cally definable from some geometrical primitives on points of space — say the
notions of congruence and betweenness on space-time points? It’s natural to
consider now an expanded notion of Russellian function: those expressable
using the logical syncategorematic operations and the constants of congru-
ence and betweenness (i.e. arbitrary open expressions of L(A, =, X)).

There is one more generalization one might be inclined to consider. Might
there be new propositional functions that can only be obtained by introducing
new primitive syncategorematic operations? One picture would be that in
addition to the logical syncategorematic forms there are also primitive non-
logical ones — perhaps there are geometric forms. But what makes these
non-logical forms primitive is that they are not constructable by inserting
entities into logical forms. I am not sure that I have a good handle on this
picture; the distinction between primitive logical and primitive non-logical
forms seems to me to be hard to maintain. Nonetheless, I describe below the
machinery needed to make sense.

Given a definability structure (D, R,app) and a collection of functions,
X C Uz (D?)P?, we will write R[X] for the class of Russellian functions con-
structed using logical forms and the new rules in X: the “smallest” extension
of R in which the elements of X are counted as primitive forms. When we are

30

taking the position that all propositional functions are obtained by inserting
entities into the gaps of logical forms, we restrict X to sets of O-ary syncate-
gorematic rules: elements of the form x — a : D¢ — D?. Thus R = R[] is
the class of logical forms. We begin by describing a general class of structures
in which the “minimality” of the extension isn’t baked in: R[X] is taken to
be any extension of R containing X that makes R[X] satisfy the coherence
conditions for definability structures.

For a € D we write a* : {¥} — D7 for the function * — a, and for a set
of elements from D, X, we write X* for {z* | x € X}.

Definition 3.6 (Conditional Definability Structure). (D, R[], app) is a
conditional A-definability structure when (D:, R[X], app) is a A-definability
structure for every finite set X C |J_(D?) and the following condition holds
for any finite sets X, Y C |J_(D7):

X* C R[Y] if and only if R[X] C R[Y].

The intended model of our notion of conditional definability is thus this.
['>5 A means that the denotation of A (call this a) is obtained by applying
a Russellian function constructed from the denotations of the elements of
Y (call these) to the sequence elements I' (call these b). Le. for some
r € R7[{c}], r(b) = a.

As we mentioned in section 3.1, our choice to model propositional func-
tions as set-theoretic functions takes away some generality from our frame-
work. This becomes apparent when abs € A: A-closed conditional A struc-
tures must be functional structures. The reason is simply because every func-
tional entity f € D777 determines a unary Russellian function appo (f* xid)
(i.e. a — app(f,a)). When two such entities, f and g, have the same ap-
plicative behaviour these unary Russellian functions are the same and so
applying A\ to each will result in the same output.!* Note similarly that
while ordinary A-closed definability structures are not functional in general,
they are functional with respect to the logical entities — 0-ary logical forms
in RZ77 for the same reason. le. if f* ¢g* € RZ™" and f and g have the
same applicative behaviour then f and ¢ are identical.

“4More precisely: suppose appo (f* x id) = appo (¢* x id). Because f*,g* € R[f*, g*],
we also have p := app o (f* x id) € R id (func). And because R[f*, g*] is A-closed, there
is a unique element Ap € R with app o (Ap x id) = p = app o (f* x id). Thus f* = g*
and thus f = g.

31

There are different ways of explicating the notion of a minimal conditional
definability structure. We define one of these below: then literal smallest A-
closed definability structure extending the original containing the new logical
entities. But this may not be the only natural way to cash out minimality.

Definition 3.7. Suppose that R7 C D? — D is any collection of functions.
Then we say that R[X] is the A-minimal extension of R when it is the in-
tersection of all type indexed collections of functions S3 containing R and
closed under the following conditions:

o [fre X thenre S?

o Wheneverr € SZ

o 7 T -
o, anda € 57 ro(id x ax id) € ST

p1P2p3 "

Whenever r € SZ77, app o (r x id) € S7,.

Wheneverr € S5 , r € S5, for eachx € A C {vac, switch, merge, \}.
o [fide A,id € S7
Given some elements d € D?, we will write R[d] for R[{dZ,... d*}].

When abs € A, the A-closure condition may transfer from R to R[X]. In
this case we call a A-definability structure conditionally A-closed with respect
to X: the smallest extension R|[X]| defined above is A-closed.

3.5 Interpretations

—_
—

I now specify how to interpret a language L£(A, =, %) in a definability struc-
ture.

Definition 3.8 (Interpretation). Let (D, R,app) be a definability structure,
= a signature of syncategorematic operations, and X a signature of constants.
An interpretation is a function [-] with the following

e When r € = is a syncategorematic rule, combining with arguments of
type @ = o1,...,0, to make a term of type T, [r] € RZ is logical form

function.

o When c € ¥ is a non-logical constant, [c] € D°.

32

When r € = is 0-ary, i.e. when it is a logical constant, then [r] : D¢ — D?
where D¢ = {x} is a singleton set with one element %, so that we can think
of an interpretation of a constant as simply an element of D7 for each type.

In some definability structures, the interpretation function can be ex-
tended to arbitrary judgments I' = M : o of a given language L(A,Z,Y),
yielding a propositional function mapping the interpretations of the free vari-
ables in M to the interpretation of M under that interpretation of the vari-
ables: [T = M : o] : D — D°. In this case we say that the structure satisfies
the enviroment model condition for that language. Below we repurpose our
notation from section 3.3, we write A[y : p,x : o & M : 7] for the unique
function p : D?” — D7 such that appo(pxid) = [I',z : 0 = M : 7] (that is,
we are using the partial operation Ag where ST = (D7)"”). This will always
exist if the structure is A-closed conditional on the set of all propositional
functions: X = {['+= M : 7] [T+ M : 7 a sequent of L(A,=,%)}.15

Definition 3.9 (The environment model condition). (D, R,app) satisfies
the environment model condition for the A-signature A if and only if every
interpretation [-] of signatures = and X can be extended to a global inter-
pretation of type sequents of propositional functions satisfying the following
constraints:

Compositionality, If[['+ A] = [['+ B] then [A+ C] = [A + C[A/B]].'6

Compositionality, [I',A,I" - M[N/z] : 7] = [Ix : o,1' = M : 7] o
([T] x [AF N : o] x [T7]) where we write [I'] = [z1 : 01... 2, : 0,] to
abbreviate id,, X ... x id,,,.

Application [I'; A+ MN : 7| =appo([['FM:0— 7] x[AFN:7])
(i.e. didy > app([l'F M : 0 — 7](d1), [AF N : 7](dy)))

15Caution: the A notation is sensitive to the background collection of functions and
may differ between the arbitrary propositional functions, X as defined, and the logical
forms R. Observe that it may exist with respect to X but not with respect to R. This
can happen when the structure is merely A-closed and [,z : o = M : 7] does not lie in
R: unconditional A-closure only requires logical forms to be abstractable, not arbitrary
propositional functions. And even when this function is a logical form in R, a unique p
might exist with respect to X and yet not be in R if R is not A-closed. Or, if R is A-closed,
it could uniquely exist with respect to R but not uniquely in the whole structure.

16This applies even in variable binding contexts; i.e. when C contain variable binders
that bind variables in I'.

33

Concretion [[',z : 0 = Mz : 7] = appo ([I' - M : 0 — 7] x id (i.e.
de — app([I'F M :0 — 7], ¢€)

Rules [I'y,... T, b r(My...M,) 7] =[r]o([l1 F My :0q] x ... x [F
M, : 0,])

Depending on what gap operations belong to A, we require the following

Abstraction [I' - Ae.M : 0 — 7] = A[l',z : o & M : 7] and the right-
hand-side exists.'”

Identity [r:0F z:0] =id,
Switch [Iy: o0,z :7,AF M : 0] =switch[[',z:0,y:7,AF M : 0]

Merge [[',z:0, A A+ M[z/z,z/y] : 7] = merge[[',x: 0,Ay:0,AF M :
7]
Vac [z :0,AF M : 7] =vac[l',)A+ M : 7]

The environment model condition does not give us a recursive definition
of the semantic value function [-J; the existence of a function satisfying these
constraints is a condition that a definability structure may or may not satisfy.
So how can we guarantee that there are any definability structures satisfying
these conditions? This is an important question for practical applications,
where one needs to construct concrete models. However in the context of the
present paper the answer to this problem is not urgent, so my treatment will
be brief.

It is, in fact, possible to turn the above constraints into a recursive defi-
nition with the aid of several lemmas. Indeed, in standard treatments of the
A-calculus one starts with the recursive definition and establishes the lemmas
(see, for instance, Mitchell (1996) §4.5.3). Observe that the left-hand-side of
each of the constraints, apart from Compositionality, is the conclusion of one
of the sequent rules, and these are defined in terms of the interpretations of
the premises of that same rule on the right-hand-sides of the constraint. One
strategy, therefore, is to build the semantic value function up recursively on
the structure of the proof of a sequent. (NB: the present approach is thus
importantly different than the more standard approach in philosophy and
linguistics of building semantic values recursively on the structure of terms.)

17

34

That is, we define a temporary function [-]p that assigns an interpretation to
each sequent relative to a derivation D, and then we prove that two deriva-
tions of the same sequent get assigned the same interpretation:'®

Proposition 3.7 (Derivation Independence). If Dy and Dy are two deriva-
tions of X P :p then [X+ P:plp, =[2F P:plp,

This allows us to dispense with the subscripts on [-]. Then we must prove,
again by induction, that the two Compositionality constraints are satisfied.
For instance, the second amounts to:

Proposition 3.8 (The Semantic Substitution Lemma). [I', A, I+ M[N/z] :
T)=[T,z:0,1"FM:7]o([I'] x [AF N :o] x [I'])

To give the reader the sense of how this might go, the derivation relative
form of the Concretion constraint would be become the following clause of
an inductive definition of [-] on proof length:

[T,z:0F Mx: T|p.cone :=app[l' F M :0 — 7]p

writing D;C for a derivation D followed by a rule C. In general we take
each of the identities in definition 3.9 apart from Compositionality and add
appropriate subscripts to turn it into a recursive definition on terms not
involving V, —,=,1> and <. In order to state the inductive conditions for
universals, conditionals, equality and definability statements we would need
operations satisfying certain commutativity conditions. To take universals
as our example, we would need a class of operations:

unizy : (D? — DY) — DP — D! where 7' is a subsequence of p.

In order to prove the derivation independence of interpretations, we must
require that these operations commute with vac, switch and merge, in the
sense that, for instance, vac, o unizy = unisy o vac;, provided o doesn’t
appear in p \ p’. And in order to prove the semantic substitution lemma,
we must also require that they commute with composition, for instance

18This is proved by induction on proof length. Every proof can be factored into the form
D:;r,;C where the only rules appearing in C' are vac, switch or merge, r is some rule
other than these rules. One can then shuffle the r forwards over C' without disturbing the
interpretation, using the fact that each of the operations vac, switch or merge commute
with all the other operations used in the semantic clauses in the other rules.

35

uniy (r) o (id x p x id) = uniy gy (r o (id x p x id). Then clause for,

say, the Universal sequent rule would be:
[T\ 7+ Yy Aly/Z] : t] puni = uni[l' = A : £]p

and similar operations must be posited for —, >, < and so on, which we will
call cond, def, cdef and prior. It is possible then to show by induction
the theorem established below, that certain sequents always express logical
forms. The details of all of this are unnecessary for present purposes and are
omitted for brevity.

Our framework takes the subjects of interpretations to be sequents, I' -
A : o, and takes these interpretations to be functions whose arguments are
intuitively to be thought of as the value of the variables in I and whose output
is the interpretation of A under those values. A more familiar framework,
at least in philosophy and linguistics, takes the subjects of interpretation
instead to be terms A : o relative to a variable assignment ¢: a function
mapping each variable type pair, x : o, into an element of D?. However,
these two frameworks are equivalent, and sometimes it is more convenient to
switch between them. Given a type assignment I' = xy : 01...2, : 0,, and
g a variable assignment, let us define g(I') to be the sequence of elements
(g(x1),...,9(z,)) € D7 x ... x D,

Definition 3.10 (Interpretation of a term). Given a variable assigmnent g,
and a term A : o we write [A]? := [’ F A : c]g(T) where I' = A : o is any
sequent with A on the right.

In order for this definition to be well-defined we need to show that this
definition doesn’t depend on T'.

Proposition 3.9. If ' A: 0 and A+ A : o are two derivable sequents,
then [['H A:0o]g(T)=[AF A:a]g(A).

It’s easy to see that the structural rules vac, merge and switch leave this
value alone: for instance [['y,x : o,y : 7,To b A : pJgl'1,z:0,y: 7,y =
Ty,y:7z:0lsF A:plg(Ty,y: 70,9 A p). With this fact in
hand, the result is easily established by an induction using proposition 3.7.
The following lemma, a generalization of Compositionality;, will be useful

36

later. Write g[Z]g’ to mean that g and ¢’ disagree at most on the variables
in 7.

Lemma 3.1. Let A, B : o have the same variables, A a subexpression of
C, and let T enumerate the free variables in A that are bound in C. If

[A)” = [B]Y for all ¢'lz]g, then [C]* = [C[A/B]}?

A couple more observations about our definitions should be made at this
point. Our definition of the environment condition can easily be extended to
languages that have a restricted rule of abstraction — e.g. a language that
abs to sequents where no free variables appear in the scope of a syncategore-
matic operation. One simply requires that A[[,z : o & M : 7] must exist for
every A-abstract, I' - Ax.M : 0 — 7, in the language, whatever they might
be. Relatedly, the environment model condition can be satisfied with respect
to one type system but not another. When A C A’ then every derivable se-
quent in £(A, =, X)) is derivable in L(A’, =, %), so that an environment model
for A’ is an environment model for A, but not conversely.

Secondly, notice that we have stipulated that an applicative structure
satisfies the environment model condition when every interpretation of a
signature can be extended to all sequents. But for some type systems, if
the environment model condition holds for any signature, it holds for every
signature. In particular, in type systems containing id, there’s no difference
between where variables and constants can occur: there is a derivation of a
sequent I' = M, iff there is a way of splitting I" into I'yI's, and there is a
derivation of I'y,z : 0,y = M’ : 7 where M’ is the result of replacing one
occurrence of ¢ with 2.2° So by replacing all the new constants with variables
in this manner, we can interpret a sequent not involving the new constants
[T" = M’ : 7] appealing to the environment model condition in any signature,
and then by filling the appropriate argument places of this function with the
interpretations of the relevant constants we obtain an interpretation in the
new signature.

19The lemma is established by considering a signature containing constants ¢ match-
ing the length and types of the sequence of variables i obtained by removing the vari-
able T from T', and an interpretation such that [¢;] = g¢(y;). One can then apply
Compositionalitys to get [z + A[¢/7]] = [T + Bl¢/y]]. Compositionality; delivers
[l FC] =[I'F ClA[¢/y]/B[cy)]] and using Compositionalitys again, we get the desired
result.

20Proof sketch of left-to-right: replace the use of Constants at which the relevant occur-
rence of ¢ is introduced with an application of identity. The right-to-left direction follows
from the substitution lemma.

37

Finally, our framework is general in the following way. While we assume
that syncategorematic application is a basic way of constructing new logical
forms, we do not build it into our framework that the syncategorematic
notions, —, V,, =,, or the definability notions >, themselves are logical in
the sense that they express logical forms and can be used in the construction
of new logical forms. —, for instance, can be represented by a binary function
cond that takes two propositional functions p : D?t — D! q : D2 — D! and
outputs a proposition function cond(p,q) : DP*> — D' but we have not
stipulated that cond takes logical forms to logical forms; i.e. that if p,q € R
then cond(p,q) € R. It is thus useful to single out a special sublanguage
of LIA,Z,Y), L7 (A, Z,0) whose sequents are guaranteed to always express
logical forms, namely the language obtained by removing cond, uni, and eq
from the rules for £(A,=,3). (Consequently, the sequents of L~ (A, =, X)
express propositional functions.)

Proposition 3.10. For any derivable sequent™ : p bt M : o, of L~(A,Z, %),
[z:pF M : o] € RF[[X]] where [X] = {[] | c € ¥}.

If uni, cond and eq map sequences of elements of R to R, this result
extends to L(A,Z,Y). And if def, cdef and prior map sequences of elements
of R to elements of R then this result additionally extends to L1 (A, Z,X).

3.6 Models

Below we write g[Z]g’ when g and ¢’ agree on all variables except, possibly,
on the variables in 7.

Definition 3.11 (Model). (D, R, app, [-],v) is a model iff (D, R, app, [-]) is

an interpretation for L(A,Z,%) and v : D' — {0,1} is a function satisfying
the following constraints, for any variable assignment g:

e v([A — B]Y) = max(1 — v([A]9),v([B]¢))-

o v([Vy.A:t]9) = 1 iff v([A : t]9) = 1 for every variable assignment
g'lz]g.

o v([AL™ B)9) = 1 iff there exists some v € (RY) such that for all
variable assignments ¢'[T)g, v([Ai]7, ..., [A.]?) = [B]Y].

o v([A =27 B]Y) = 1 iff there exists some X C D andr € (R3[X]) such
that for every variable assignment ¢'[T)g, v([A1]7, ..., [A.]7) = [B]Y.

38

o v([A= B]9) =1 if and only if [A]? = [B]*.

If (D, R[], app) is a conditional definability structure we may also state
clause for conditional definability in (D, R[], app, [-],v):

o v([A D?’Tﬁ B]9) = 1 iff there exists some v € (R7)[[C1]?, ..., [Cn]’]
such that for all variable assignments ¢'[Z]g, v([Ai]7, ..., [A.]?) =

[B]].

4 Examples

4.1 The maximal definability structure

The simplest example of a definability structure is one where every function
counts as a logical form.

Example 4.1 (All functions are logical forms). Let (D, app) be any applica-
twe structure, and suppose that R contains all functions f : DP — D°.
Then (D, R, app) is a {id, switch, merge, vac}-definability structure.

It is immediate that R satisfies satisfies the closure conditions on logi-
cal forms, (comp) and (func), simply because all the relevant functions are
logical forms. For similar reasons it satisfies the the closure conditions for
{id, switch, merge, vac}.

This structure is not an abs-definability structure — i.e. it is not A-
closed — unless for every unary logical form r € R}, there is a unique
function Ar € R777 such that app o (Ar x id) = r (indeed, this condition
must hold for logical forms of arbitrary arity). Now Ar = % — d for some
d € D°77. So in the present structure, this condition essentially requires
that for every function r : D? — D7 there is a unique corresponding element
d € D°77 with the applicative behaviour of that function: app(d,a) =
r(a) for all @ € D?. This means that the applicative structure must be
“full” in the sense that every applicative behaviour (i.e. function from D°
to D7) is realized by some element d € D777, and “functional” in the sense
that each applicative behaviour is realized by exactly one element of D777.
Every full and functional applicative structure is isomorphic to a “standard”
structure in which D?77 consists of all functions from D? to D", and in
which app denotes function application. Indeed, the converse also holds:in
every standard applicative structure, the definability structure consisting of
all functions is A-closed.

39

Proposition 4.1. Let (D, R,app) be a definability structure where all func-
tions are logical forms (i.e. RS = (D?)P"). Then (D, R, app) is A-closed if
and only if (D,app) is standard (i.e. D~ = (D7)P".

The notion of metaphysical definability in the maximal structure is clearly
not very interesting. Any model (D, R, app, [-], v) over a maximal definabil-
ity structure will make all statements of the form Ay, ..., A, >y B true, since
there is always some function or other that maps [A;]...[A.] to [B]. Note,
however, that this does not mean all definability claims are true. The pre-
vious observation does not extend to claims of the form A,,..., A, >z B
where T is a non-empty collection of variables. For instance >,F'z, where
F : o0 — 7, won't be true unless there is some function r : {x} — D777 such
that r(x) = [Fxz]9 = [Fz]9 for every g[z]g’. This can only be satisfied if
I expresses a vacuous property whose output is the same no matter what
its input is; e.g. Ax.A where z is not free in A. Indeed, some definability
statements, like >, (p =, T), are logically false when T is treated as a logical
constant (i.e. a 0-ary element of =): they are false in all definability models,
including the maximal ones. (This logical falsehood should not be confused
with the logical truth p>, (p = T)).

4.2 The structure of definable functions

Suppose that we have given an applicative structure (D, app), and we have
at interpretation [-] of a signature of rules = and constants ¥ mapping each
rule r : p = 7 € E to a function [r] : D? — D7, and each constant ¢ : o
to an element [c¢] € D?. It’s natural to ask whether we can, using [-], turn
(D, app) into a A-definability structure by identifying the logical forms R
to be just those functions definable from linguistic propositional functions,
ie. sequents T : p = M : 7, of the language L(A,=,Y) relative to the
interpretation [-].

In following Russell, we took our motivating examples of propositional
functions and logical forms by analogy with open terms of a language. Thus
it is of particular interest to check that the class of functions definable from
open terms of a language, suitably interpreted, gives rise to a definability
structure. In contrast to the maximal definability structure discussed in
the previous section, this is in a natural sense the “smallest” definability
structure on an applicative structure that contains the initial interpretations
of the primitive rules = and primitive constants 3.

40

We say that an applicative structure (D, app) satisfies the environment
model condition for a A-signature A with respect to an interpretation [-]
of = and ¥ when there is a global interpretation function [[' - A : o] on
sequents I' = A : o of L(A,=,X) satisfying the conditions from definition
3.9. Observe that while definition 3.9 was given for definability structures,
the clauses make sense in an arbitrary applicative structure given an initial
interpretation [-] of the primitive rules and constants. We will say that the
interpretation (D, app, [-]) satisfies the environment model condition when
(D, app) satisfies it with respect to [-].

Example 4.2 (The structure of A-definable logical forms). Suppose that
(D, app, [-]) satisfies the environment model condition for L(A,E,%). The
structure of A-definable logical forms over (D, app, []) is then given by:

RZ={[z:pFA:0]|T:pF A:0 asequent of LIA,Z,0)}.

Example 4.3 (The structure of A-definable propositional functions). Sup-
pose that (D, app, [-]) satisfies the environment model condition for L(A,E,)
and [-] is surjective from £° to D at each type o. The conditional definabil-
ity structure of A-definable propositional functions over (D, app, [-]) is then
given by:

RZ[[Xo]] ={[7:pFA:0] |Z:pF A: 0o asequent of L(A,Z,%0)}.
where Yo ranges over a finite subsets of X

observe that because [-] is surjective, every finite subset X of D is of the
form [Xo] (i-e. {[c] | ¢ € £o}) for some finite set X.

Proposition 4.2.

1. The structure of A-definable logical forms in (D, app, [-]) is a A-definability
structure.

2. The conditional structure of definable propositional functions in (D, app, [-])
is a conditional A-definability structure; indeed it is the minimal con-
ditional definability structure.

Proof. Begin with 1. To establish (comp) suppose that [I',z : 0," F A : 7]
and [A F B : o] are in R. By the substitution lemma I',; A, - A[B/x] : 7
is a sequent of L(A,Z[S],0), and so [I', A,T” + A[B/xz] : 7] belongs to the

41

definability structure. By the condition Compositionality from definition 3.9
we have that [[, A I"F A[B/x]: 7] =[l,z:0,I"FA:7]o([I'] x[AF B:
o] x [A] as required.

To establish (func), suppose that [I' = M : 0 — 7] isin R. By Concretion,
[z : o b Mx : 7 is in the language so [I',x : ¢ = Mx : 7] is a logical
form. And by the condition Concretion from definition 3.9 we see that this
isappo ([I'FM:0 — 7] xid,).

Establishing that that it is a A-definability structure is similarly straight-
forward. For vac, if [[' H A : o] is in the structure, then [,z : 7+ A :
o] = vac[I' H A : o] is also in the structure, and similarly for id, merge
and switch. For abs note that if [T,z : o b M : 7] is in the structure we
can define A\[I,z: o - M : 7] = [['F Az.M : 7]

For 2, we must show that when I' H A € L(A, =, %), then [[' - A] €
R[[>0]], the A-minimal extension of R by [Xo]. A straightforward induction
shows that every line of a derivation in L(A, =, %) is in R[[Xo]]: derivations
start with sequents of the form - ¢ with ¢ € X, or with id if id € A, whose
interpretations belong to R[[¥¢]], and will proceed by rules that R[[>]] is
closed under.

We must also show the converse, that R[[So]] C {[I'F A] | T+ A €
L(AZE,%0)}. Note that R[[¥¢]] is defined as the smallest type-indexed
set containing R, containing [%o], and closed under comp, fun, and the
A-operations. So in order to show that RC {[I'F A] |[T'F A € L(A,=,%)}
it suffices to show that the latter contains R, [¥], and is closed under comp,
fun, and the A-operations. But this is clear from the constraints on [-]. O

Indeed, we can use the previous result to see that every definability struc-
ture, (D, R,app), is a structure of definable functions in some interpreted
language, namely a language with a primitive rule for every element of R.
That is to say, the interpreted language where = = R and with the interpre-
tation [r]g = r.

Corollary 4.1. Every A-definability structure (D, R,app) is the structure
of A-definable functions over (D, app, [-]r) in the language L(A, R,).

Proposition 4.3. Consider an interpretation (D, app, [-]) satisfying the en-
vironment model condition for a language L(A,=,3). Then R[[A]] =

42

4.3 Substitution structures

The present framework for modeling propositional structure generalizes the
framework of substitution structures presented in Bacon (2019). This section
explains the connection. I will briefly introduce the notion of a substitution
structure, and I'll show how one can given a substitutional analysis of the no-
tion of a logical form and metaphysical definability, generalizing and improv-
ing the definitions given in Bacon (2019). Substitution structures provide
us with our last class of example of definability structures; they correspond
to structures for the A-signature with all the structural rules id, switch,
merge, vac.

The substitutional approach to propositional structure can be explained,
again, by a linguistic analogy. In this analogy the logically simple (or “fun-
damental”) properties and relations in reality correspond to the primitive
predicates and relations of a language. Complex properties and relations can
be thought of as composed of these basic properties and relations via logi-
cal forms, the metaphysical analogue of syncategorematic operations. In a
language we are able to make sense of the result of substituting the simple
constituents of an expression with other things of the same type as that con-
stituent. But even if reality is not structured like a language—even if it is
relatively coarse-grained—a large class of theories of propositional structure
can support the metaphysical analogue of this idea of substituting simple
constituents for other things: a metaphysical substitution.

In a given model of properties and relations (an applicative structure
(D, app)), a metaphysical substitution can be modeled by a homomorphism
of that applicative structure to itself: a type indexed collection of functions
i? : D7 — D? that commutes with application i"app(d, a) = app(:?~"d,i°a)
for every d € D77 and a € D?, in accordance with the fact that substitu-
tions preserve logical forms, and thus in particular preserves things in subject-
predicate form. The abstract approach to substitutions allows us to make
sense of substituting one thing for another in a proposition without assuming
that propositions are structured enough to have explicit constituents.

Definition 4.1 (Substitution structure). A substitution structure is a triple
(D, app, M) where (D, app) is an applicative structure, M is a set of homo-
morphisms of (D,app) to itself, called the metaphysical substitutions, and
M contains the identity and is closed under composition.

In Bacon (2019) and Bacon (2020) a restricted notion of metaphysical

43

definition was given in this framework which had the following meaning:
Ch,...C, are logically simple and together metaphysically define A. The
analysis was based on the following way of expressing linguistic definition
from simple expressions (constants):

A is entirely definable using the non-logical constants cq,...,c,, the
logical constants and the syncategorematic rules of the language if
and only if, every substitution of the language that fixes the constants
cy...c, also fixes A.

It is not too hard to see that this is equivalent to our account of linguistic
definition in section 2.2—that there exists a linguistic logical form, in the
sense of definition 2.4, mapping cy, ..., ¢, to A—provided c4,...,c, are con-
stants. By recasting the above definition in terms of substitution structures
we obtain the notion of metaphysical definition in Bacon (2019).

However the analysis breaks down when we try to capture the relation of
metaphysical definition between arbitrary entities C,...,C,, and B, where
C}...C, might not be metaphysically simple. Moreover, the unrestricted
notion of metaphysical definition is necessary for most applications of the
framework in science and philosophy. Consider, for instance, the definition
of heat in terms of further thermodynamical properties like entropy, that
are not themselves fundamental, or bachelorhood in terms of being married
and manhood. To see why the substitutional analysis described above is
not fit for this more general purpose, consider again the case of linguistic
definition. We clearly do not want to say that p can be defined from the
complex sentence (pAq). Yet any substitution that maps the latter sentence
to itself, must map p to itself (as well as ¢ and A).

My goal here is twofold: (i) to establish a partial correspondence between
the two frameworks and (ii) to supplement Bacon (2019) with a fully general
substitution theoretic analysis of metaphysical definability using concepts
from the present framework. To achieve (i) we will give a substitutional
analysis of a logical form and, conversely, a definition of a metaphysical
substitution in terms of logical form, establishing a partial correspondence
between the frameworks. For (ii) we can take our substitutional analysis of
logical form, and plug it into our analysis of metaphysical definability in terms
of the existence of a logical form mapping the definiens to the definiendum.

The fundamental idea behind the correspondence is this: substitutions
are simply mappings that preserve logical form and, conversely, logical forms
are just things preserved by substitutions. Using the first idea, we can define

44

a logical form in terms of substitutions as something that is preserved by
all substitutions. Given a substitution structure, a logical form is thus an
n-ary function between the domains of the structure that commutes with
all substitutions in the sense that ir(d) = r(id) for any substitution 7 and
sequence of elements d of the substitution structure.

Definition 4.2 (The logical forms of a substitution structure). Let S =
(D, M, app) be a substitution structure. Then we write 1f (M) for the logical
forms determined by M :

(If(M))g :={r: D? — D | for every i € M, i(r(d) = r(id)}

We write 1f(S) := (D,1f(M),app), which is the {vac,switch, merge, id}-
definability structure determined by S':

Two substitution structures, (D, M, app) and (D, M’ app), based on the
same applicative structure may have the same logical forms, in which case
we call them equivalent.

Definition 4.3 (Equivalence). (D, M, app) and (D, M’ , app) are equivalent
if (M) =1t (M),

In the other direction, we define a substitution as a mapping that pre-
serves logical form. So given a definability structure, a substitution is a
homomorphism i such that ir(d) = r(id) for all r € RZ of the definability
structure.

Definition 4.4 (The substitutions of a definability structure). Suppose that
A = (D, R,app) is a definability structure. Then we write sub(R) for the
substitutions determined by R:

ir(d) = r(id) for every d € D? and r € RS.
We write sub(S) for the substitution structure (D,sub(R),app).

Heuristically, we can see that these definitions are correct by noting the
correctness of their analogues in the case of linguistic logical forms and lin-
guistic substitutions. The coincidence of a substitution with something that
commutes with all the syncategorematic operations of a language is usually
taken to be definitional of a substitution, so we will focus on the defini-
tion of a logical form in terms of substitutions. Recalling definition 2.4, a

45

function r is a linguistic logical form if and only if there exists a sequent
x1:01,...,%, 0y B A7 involving no non-logical constants (i.e. a sequent
of L(A,=,0)) such that r(C; ...,C,) = A[C/T]. Since substitutions preserve
logical form — they fix the logical constants, and leave syncategorematic
operations alone — substitutions clearly commute with such functions. Con-
versely, provided Y7 is non-empty at every type o, if a function of the form
r: LA E X)X, .. x LA EY) = L7(A, 2, X) commutes with every sub-
stitution it must be of the form r(B; ..., B,) = A[B/z] for some logical term
A. For let Afe] be the sentence r(¢) for some arbitrary sequence of constants
¢ in X of appropriate types. Then by considering the substitution ¢ mapping

each ¢; to By, we can see that r(B) = A[B/¢] for any appropriate sequence
of terms B: A[B/c] = iA[¢] = ir(¢) = r(ic) = r(B). So r has the required
form.

We must check that these two definition do indeed deliver us with a
definability structure and a substitution structure. The latter requires just

showing that sub(R) is a monoid:

Proposition 4.4. sub(R) as defined above contains the identity homomor-
phism and is closed under composition.

The proof is trivial. In the other direction we have:

Proposition 4.5. (D,1f(M),app) is a definability structure for the X\ sig-
nature {id, vac, merge, switch}.

Proof. Let us write R for 1f(M). Firstly we show that the conditions for
id, vac, merge, switch hold. Clearly id, € R7 since the identity trivially
commutes with any substitution. If r € RZ then i(switchr(d,abdy) =
i(r(dibady)) = r(i(dibady)) = switchr(i(dyabdy)). Similar calculations es-
tablish the case of vac and merge.

Closure under parallel compositions is straightforward, if r € RZ and

P10p3

p € I, then ir(dip(dz)ds) = r(idyip(ds)ids) = r(idip(idz)ids) so app o
(id x p x id) is also substitution invariant.

Next we must show that

(func) r € R only if app o (r x id) € R7,

Assume that r € RZ 7 and that i € M. We must show that iapp(r(d),e) =

app(r(id), ie) for arbitrary d and e, which it does by the fact that i commutes
with app (it is a homomorphism) and with r by assumption.

[]

46

Next we consider the conditions under which (D, 1f(M), app) is A-closed.
In general it is not, but Bacon (2019) defines a very natural class of substitu-
tion structures—quasi-full and quasi-functional structures—which turn out
to always determine A-closed definability structures:

Definition 4.5 (Quasi-full and functional substitution structures). A sub-
stitution structure is quasi-full iff, for every o, 7, to every f : M x D — DT
with the property that jf(i,a) = f(joi,a) for alli,j € M,a € D?, we can
associate an element f* € D777 such that (i) app(f*,a) = f(1,a) for every
a € D7 and (i) if* = ((j,a) — f(joi,a))*.

It is quasi-functional iff, wheneverd,d € D°~7 ifapp(id,a) = app(id’, a)
for everyi € M and a € D, d=d .

Theorem 4.1. If (D, M, app) is quasi-full and functional, then (D,1f(M), app)
is A-closed and so is a definability structure for the full X signature {id, vac,
merge, switch, abs}.

Proof. Suppose that (D,app) is quasi-full and quasi-functional. Suppose
r € R7 . For each d, the function f4(i,a) = r((id)a) satisfies the condition
that jf5(i,a) = fz(j oi,a) for all 4,j € M, a € D°. Thus by quasi-fullness
there is, for each such d, an element f5 € D777 such that app(f3,a) = r(da),
so we can define Ar as d — f7. Next we show that this function is in
If(M): that iAr(d) = Ar(id) for any i € M and appropriate sequence d.
This can be established using quasi-functionality: it suffices to show that
app(jilr(d),a) = app(jAr(id),a) for every j € M and a € D°. The left-
hand-side computes as follows:

app(jiAr(d), a) = app(jif;, a) = app(((k,a) = fy(kojoi,a))*,a) = f(joi,a) = r((jid)a)

and the right-hand-side simplifies to the same value:

app(jAr(id),a) = app(j [, a) = app(((k, a) = fg(koj,a))*,a) = f3(j,a) = r((jid)a)

This function is, moreover, unique. Suppose that q commutes with all
substitutions (i.e. is in 1f(M)) and app(q(d),a) = r(da) for every sequence
d and a in the structure. Again we may show that q = Ar using quasi-
functionality. It’s sufficient to prove that for arbitrary j € M,a € D°

app(jq(d),a) = app(jAr(d),a). The right-hand-side is:

app(jAr(d),a) = app(jf5,a) = app(((k,a) = fz(kej,a))*, a) = f3(j,a) = r(jda)

47

and the left-hand-side is:

app(ja(d), a) = app(a(jd), a) = r((jd)a)
as required. O

In order to complete our discussion of the correspondence between the
frameworks, we will explain the sense in which definability structures are
more general than substitution structures. Note, firstly, that we have the
following.

Corollary 4.2. Some substitution structures are not determined by any de-
finability structure, and some definability structure are not determined by a
substitution structure. I.e. neither If nor sub are surjective.

Proof. For the first part, consider the applicative structure of closed terms
in a language L£(A,Z=,3) where X7 is infinite at every type o and let M
be the set of substitutions of the language that map all but finitely many
constants to themselves. As we showed above, r € If(M) exactly when there
is a closed term A[¢] such that r(B) = A[B/d] for all sequences of closed
terms B with types matching ¢. Clearly arbitrary substitutions commute
such functions, so that sublf(M) contains substitutions that map an infinite
number of constants to terms other than themselves.

For the second part, proposition 4.5 tells us that every substitution struc-
ture gives rise to a {id, vac, switch, merge}-definability structure, so defin-
ability structures that do not satisfy one of these conditions will not be
determined by a substitution structure. O

Our example of a substitution structure that is not generated by a defin-
ability structure is rather artificial. The structure of linguistic substitutions
that fix all but finitely many constants is restricted in an arbitrary way that
doesn’t really reflect the structure of the underlying structure of properties
and relations. Earlier we said that two substitution structures on a given
applicative structure are equivalent when they determine the same logical
forms—equivalent structures contain the same information about the struc-
ture on the elements of different domains. So it is natural to ask whether
every substitution structure is equivalent to a structure determined by a
definability structure.

We can see that the answer is ‘yes’ as follows. From each class of substi-
tution structures that are essentially the same, there is a structure in which
the monoid M is maximal, which we will call a normal substitution structure.

48

Definition 4.6 (Normal substitution structure). A substitution structure
(D, M, app) is normal when sublf(M) = M.

Clearly all normal substitution structures are representable by a defin-
ability structure, namely (D, 1f(M), app). Thus every substitution structure
is essentially the same as a substitution structure that is representable by a
definability structure. By contrast, a definability structure that doesn’t sat-
isfy, say, the switch condition, is not essentially the same as one that does,
on any good understanding of what it might mean for two definability struc-
tures to be “essentially the same”. Thus some definability structures are not
representable, even up to a good notion of equivalence, by a substitution
structure. In this sense, then, definability structures are more general than
substitution structures.

Finally, as a straightforward corollary of this discussion, we provide, as
promised, a purely substitution theoretic definition of general metaphysical
definability in the framework of Bacon (2019).

Definition 4.7 (Substitutional definability). If (D, app, M) is a substitution
structure, d € DP, a € D, we say that d substitutionally defines a iff there
exists a function r : DP — D such that

(i) For alli e M, e e DP, ir(e) = r(ie)
(ii) r(d) = a

To see that the analysis of metaphysical definition really generalizes that

given in Bacon (2019) we must show that they coincide when the definiens
are fundamental. Here are two observations:

Proposition 4.6. Ifd substitutionally defines a (in a substitution structure)
then every substitution that fizes d fixes a.

Proof. Suppose r(d) = a where r is substitution invariant, and id = d. Then

ia = ir(d) = r(id) = r(d) = a. O

Conversely, if d are elements of a fundamental basis, in the sense of Bacon
(2019) definition 19, then we can obtain the converse: if every substitution
that fixes each element of d fixes a, then there exists a substitution invariant

r such that r(d) = a, by setting r(b) = ia where 7 is a substitution extending
a mapping i~ such that i~ (d) = b (i.e. i~ (dy) = by, for each k =1,...,n).2

2IThat r commutes with substitions can be established as follows. jr(b) = ia where

49

5 Logics of Metaphysical Definability

In this section we axiomatize the logics of logical definability over various
classes of definability structures, as well as presenting some partial results
concerning the the logic of conditional definability. The goal is to come up
with an axiomatization of these notions that is sound and complete with
respect to different classes of models.

We will axiomatize the logics of A-definability models in the case that
id € A, since things run fairly smoothly in these cases. In section 5.5 we
discuss the complications that arise with extending the results to the cases

where id ¢ A.

5.1 Logics of definability

Throughout this section we will work in the language L (A, Z, Y) containing
primitives for expressing logical definability statements. Recall that in the
case that id € A we add > by the following type of rule

IHA oy r,FA,:0, AFB:T
Flan\fl—AlAnD?B

© \ T is the result of removing all occurences of the variables 1, ..., x, from
the context ©. >, ., is shorthand for >, ..y so that [> is really indexed
by finite sets of variables, not sequences, and >, and >,, are the same
expression.

This language suffices for the purposes of introducing deductive systems
axiomatizing the class of A-closed structures. In order to construct an ad-
equate deductive system for A-structures, we will also need to impose the
condition that = has infinitely many syncategorematic rules of the form
r : p = 7 for every sequence of types pr. Their purpose is akin to the role
that variables play in deductive systems for quantifiers (where a proof that
an arbitrary object, represented by a variable, has some condition suffices for
one to infer the universal generalization). We will therefore call these extra
elements of = rule variables. Variables are often treated as technical devices
in proof systems and are not regarded as interpreted expressions. Usually

id = b. And r(jb) = ka where kd = jb = ijd. Now by proposition 8 of Bacon (2019), it
follows that since kd = jid, and since every substitution that fixes d, fixes a, that ka = ija,
so that jr(b) = r(jb) as required.

50

a more complicated proof system is available in which these uninterpreted
expressions do not occur, but I will not engage seriously with the project of
eliminating variables of either sort here. When abs € A, however, deductive
rule variables are eliminable in a straightforward way which will be explained
later.

We assume some basic logical axioms and rules. The system HF consists
of the smallest subset of the type ¢ terms of £LT(A,=Z,X) in some signature
of non-logical constants ¥ containing all instances of the following principles
and closed under the rules MP and Gen.

PC All instances of propositional tautologies.

Ul V,x.A — A[t/z] where t is a term free for z in A

Bn A — A" when A and A’ are immediate [or n equivalents.
Refl A=, A

LL A=, B— C — C[B/A] provided no free variables in A or B are in the
scope of variable binders in C.

Formal Functionality Vz(A =, B) — C — C[A/B] provided any free
variables in A or B that are in the scope of variable binders in C'
belong to 7.

MP If - A — B and + A then F B.
Gen If - A — B then - A — V,2.A when = ¢ FV(A)

By HF* we will mean all instances of these axioms in the language £+ (A, 2, Y).
Observe that these schemas above, and throughout the paper, are not only
schematic in the expressions that can take the place of the latin letters (like
A, B,t above), but they are also schematic in the types of lower case Greek
letters (e.g. o above).

Formal Functionality is a result of our simplifying assumption of mod-
eling propositional functions in terms of set-theoretic functions. This par-
tially captures the idea that propositional functions are individuated by their
outputs.?? In languages that contain A-abstracts (i.e. when abs € A)

22Tt is only a partial characterization since it only applies to propositional functions
determined by sequents T : @ - A, expressible in of the language L£(A, =, X).

51

and fn Formal Functionality is equivalent to the principle Functionality
Voos s FGVox(Fx =, Gx) — F =,,; G), described in, e.g., Bacon (2023b)
§6.5.22 When) is missing from the language the principles are inequivalent.

For each choice of A-signature A, one can ask what the logic of logical
definability is in L7 (A, Z,X) over the class of A-definability structures, and
one can similarly ask what the logic of conditional definability is over these
structures. In the remainder we will axiomatize 64 logics out of the 128
possible logics in the first class, and 32 from the latter.

Definition 5.1 (Logics of definability).

e L[A] is the set of sentences in the language LT (A, Z,X) of logical de-
finability true in all A-definability structures.

o L[A] is the set of sentences of the language of conditional definability
Lt(A,Z,X) that are true in all A-definability structures.

Note that our logics are parameterized by the A-signature A, which deter-
mines which sentences belong to the logic L(A) in two distinct ways. First, A
determines which language the sentences belong to, and in particular, which
A-terms can appear in those sentences. Second, A also determines which
class of definability structures are relevant (A-structures), and so which sen-
tences are valid may vary in a way that outstrips varying which formulas
well-formed in the language.

5.2 The logic of logical definability

Henceforth we will use Greek letters like I', A and so on as short for sequences
of terms of the right type to make I' >Z M well formed. The logic of logical
definability L[] must contain the following principles, which are valid in all
definability structures. We call the result of adding these principles to H the
base principles. They are summarized in table 5, but must be read as follows.
In the principle Instantiation z are free in B and Tz must not get bound when
B is substituted for y in A or any term in I'. In Rules 7 : § = ¢ € Z. In Cut

ZFormal Functionality allows us to move from V,z(Fz =, Gx) to Az.Fz = A\v.Fx —
Az.Fx = Az.Gz, and using Refl and n we can conclude F' = G. Conversely, if VZ(A = B)
we can conclude using 8 that VZ((A\Z.A)Z = (Az.B)Z). By Functionality A\T.A = A\Z.B.
C' is B equivalent to C[(A\Z.B)Z/B], which by Leibniz’s law is C[(AZ.A)Z/B] which is
equivalent to C[A/B] as required.

52

Instantiation I'>20 A — [[B/y] >2 A[B/y]
Rules [>% r(T)
Cut (T 07 A) A (A, A, A P72 B) 5 (AT, A 2% B)
Concretion I'>2""" F Ty >0 Fy
Rule Gen If+C — Jz.r(A) # B then - C — —(A >z B)

Table 5: The Base Principles

Id T>ZX
Switch ['z,y, A>-C =Ty, 2, Ap>zC
Merge Iy, Ay, X>zC —T,y,A¥>:C
Vac 'z C —=T,y>g C.
Abs Dyl My Tl M

Table 6: The A Principles

we require that {T} C {7}, in Concretion y € T\ FV(I', F') and in Rule Gen
r is a rule variable that doesn’t appear in C.

What principles characterize A-definability structures for A C {id, switch, merge, vac, abs}?
We call these the A principles; these are summarized in table 6. We say that
a variable is fresh in I' > C' when it doesn’t appear free in I' or C. The
variables x and y to be fresh in all of the schemas in table 6 and in Abs we
require y € {z} \ FV(I', M).

The rule Rule Gen preserves validity in all definability structures. More-
over, each of the principles Id, Switch, Merge, Vac, and Abs are valid in
A-definability structures for which A contains the correspondingly named
conditions — i.e. they are valid in definability structures satisfying the cor-
responding condition id, switch, merge, vac and abs (being A-closed). Id
ensures that every thing can be defined from itself, via the vacuous Russel-
lian function id, and so is valid in id-definability structures. Switch says
says if you can define C' from some things then you can also define C' from
those same things in a different order, and so is valid in switch-definability
structures, whose Russellian functions are closed under switch. And so on.

The situation with logics containing Abs (when abs € A) is special. By
using Rule Gen and Abs we can derive the following principle:

Decomposition I', A>2" B — 3, ,,F(I' > 77 F AVZ.FA =, B)

Bacon (2020) uses Decomposition as the basis of a definition of metaphysical

53

definability.?*

This implication actually goes in the opposite direction as well. If we re-
move Rule Gen from our system, but we have both Abs and Decomposition,
it turns out that Rule Gen is admissible. This is significant: Rule Gen is a
somewhat unfamiliar kind of rule, since it involves adding “syncategorematic
rule variables” to our language. Aside from this, I think it is generally more
perspicuous to eliminate primitive rules in favour of axioms where it is pos-
sible. It follows that in cases where abs € A we can axiomatize our logics
without Rule Gen and rule variables, by adding Decomposition and princi-
ples corresponding to the elements of A. Proposition 5.1 below summarizes
the situation.

Let A* be the schemas capitalized above corresponding to the elements
of A (so that A* contains the schema Merge iff A contains merge, and so on,
and both Decomposition and Abstraction correspond to abs).

Definition 5.2 (Deductive systems). We write -5 for the deductive system
corresponding to the A-signature A. It is the smallest subset of L(A,E,Y)
satisfying the following, where we write Fx A for A €y

FAEE

e o A whenever A is an instance of an axiom of H , a base principle

or of N*.
o I[f-yn A— B andkp A thent-x B

e I[fFA A — B and = is a variable not appearing free in A, Fn A —
Vyx.A.

o Ifban A — JTr(B) # C and r doesn't appear in A, then by A —
(B >z C).

Definition 5.3 (Provability and consistency). When T' C L(A,Z,Y) is a set
of formulas,

o T\ B if and only if, for some finite set of formulas Ay,..., A, € T,
Fa (AL N ANAL) — B.

o T Iy, or “T' is A-inconsistent”, if and only if T = C' for every formula
C of LINZ,Y).

24Tn terms of “purity”, special case of definability statements I' >z A were I' = .

o4

It is immediate from the definitions and propositional logic that the de-
duction theorem holds: If T, A+, B then T'Hy A — B, and that T, ~A -,
if and only if T, A.

First we show how to eliminate Rule Gen in the case that abs € A.

Proposition 5.1. Suppose abs € A and consider the variant system =}
obtained from our definition of o by removing Rule Gen and adding Decom-
position as an axiom .

1. Rule Gen is admissible for .
2. Decomposition is a theorem of .
Thus =) and =5 are the same relation.

Proof. For 1 suppose that -y A — 37.7(B) # C. The contrapositive of the
I' = € instance of Decompositions says: V5_,,F (Dg_"’F — JT.FB #, C) —
—Bp>zC. Let F': p — o be an arbitrary entity such that >¢F'. By replacing
the rule r(B) with F'B everywhere in the derivation of -y A — 3z.r(B) # C,
we can see that -y A — 37.F(B) # C. Using the contrapositive of Decom-
position and our assumption >gF we can infer, appealing to the deduction
theorem, that -y A — —(B >z C) as required.
For 2 we derive the contrapositive. First note that we can prove V5, F' (r Dgﬁa

F — Jz.FA #, B) — Jz.p(T'A) #, B, where p is a rule variable. This
is established as follows. First, an instance of Ul is Vs, F(I >477 F —
J2.FA #, B) = (I 577 Ay.p(Ty) — 3z.Ay.p(l'y)A #, B) instantiating F
with A\y.p(I'y). We can also establish " Dg_m Ay.p(Ty) since I',y >, p(I'y)
from Rules, and then by applying 5 and Abstraction. Note that this requires
us to be able abstract into the scope of a rule variable p. By Rule Gen,
we can infer V,_, F(I'>[7" F — 31.FA #, B) = —(I', A>; B), which is
equivalent to the contrapositive of Decomposition. O

In order to get a feel for these axioms, we now derive a couple of theorems
in these systems.

Proposition 5.2. Complication follows from the base principles, and Uni-
formity from the base principles and Abs.

Complication I' D?(UHT) MAA D?U >N — T, A2 MN

Uniformity I'>)" A — V;X3,Y (X >y Y)

95

Proof. Assume I' >z M and A >y >N. From Concretion we get I', 2 >z, Mz,
and so by Instantiation we get I', N >z M N. Finally we obtain the result,
I') A >z MN by Cut.

Suppose now B >y A. By Decomposition, 3F(>F A FB = A). From >F
we can infer from Concretion and Instantiation X; > F X, and by repeating
this we can get X > FX. By existential generalization we get 3Y.(X>Y) and
the result follows by universal generalization and the deduction theorem. [J

Let me end by mentioning a class of principles we haven’t discussed yet
but are tempting principles, stating that logical operations, or even the defin-
ability operations themselves, can be used in logical metaphysical definitions:
for instance, that being old and wise can be defined from being old and being
wise alone — conjunction isn’t needed as a further ingredient, it is rather a
mode of combination like application and A-abstraction are.

Conditionals I'>z ANA D>y B - T'A by (A— B)

Equality ' >z ANA Dy B - T'A g (A=, B)

Universals I'>z, A = I'>z V9.4

These are validated by requiring that [I' = A : o] € R for all terms A

in the signature containing the logic constants. For universals, for instance,

this is equivalent to stipulating that the operations uni from section 3.5 map

elements of R to elements of R. Generalizing the soundness and completeness

results of the next section to logics containing these principles, with respect

to the obvious classes of definability structures, is utterly straightforward.
Because we have not built into our framework the assumption that the

logical operations —,V,= and so on can appear in logical forms, we will

single out a special language whose sequents always denote logical forms in

the semantics (see 3.10). Let L~ (A, Z,) be the system obtained by removing
uni, cond and eq from the system characterizing L(A, =, 3).

Lemma 5.1. For any sequent T:o = C : 7 of L7 (A, Z,0), FAo T >z C.

Proof. This proceeds by an induction on proofs of the sequents of L(A, =, ¥).
We do the case where A = {id, switch, merge, vac, abs}; for smaller A-
signatures some of the cases needed in this case are unnecessary

id. z: 0 F x : 0, therefore x >, x since Id A*

56

Rules. Suppose that 7; >z, My, ..., T, >z M, are derivable. The ax-
iom Rules says that Mi,..., M, bz 7z 7v(M;...M,). The desired ruselt,
Ty ...Tp gy 7, r(M; ... M,) follows by Cut.

Switch. Suppose that Tyzw Fz,..5 M. Then Tzyw Fzy,.5: M follows by
Switch.

Merge. Suppose W1 2WaeyWs D>, ww,yms M. Since W xwayws are all distinct
(because they correspond to a type assignment), we can infer by Instanti-
ation that W, 2W22W3 b, 2wyws M|[2/xy] Then by merge Wi 2Waw3 b, w,mws
M{z/xy]

Vac. Suppose 7>z M. Then Ty >z, M follows immediately by the axiom
Vac.

Abs. Suppose Ty >z, M. By [this is equivalent to Ty >z, (Ay.M)y. So
by Abstraction T >z (Ay.M) follows.

Constants does not occur because we've set X = (). O

It is clear that if we add the axioms Universal, Equality, and Conditionals
to the base and A principles, the above result extends to all sequents of
L(A,=,0), and if we further add Definitions it extends to L (A, =, 0).

5.3 Soundness and Completeness

The goal of this section is to establish soundness and completeness for the
logics of logical definability.

Theorem 5.1 (Soundness and Completeness). For each \-signature A con-
taining id:

A€ LA iff -y A

Given a model M = (D, R,app, [-],v) of a language L(A,=,¥) with a
rule signature = that does not contain infinitely many rules at all types (i.e.
doesn’t contain rule variables), we can introduce the notion of validity of a
formula A that does contain rule variables in this model. Suppose =t D = is
the extension of = with infinitely many rule variables, and similarly ¥ D .

Definition 5.4 (Validity). Let M = (D, R, app, [-], v) be a model for L(A, =, ¥),
and A a sentence of L(N,ZT,57). We will say that M = A iff for all inter-
pretation functions [T : ET — R, [[]* : ¥ :— D extending [-] to =2t and
¥*, (D,R,app, [], v) F A

o7

A formula A is valid when it remains true no matter how the rule variables
are interpreted as logical forms (recall that by the definition of an interpre-
tation [r]* € R for any rule r). Tt is clear that if A € L(A,Z,) and is valid
then A € L(A).

Proposition 5.3 (Soundness). The following hold with respect to a language
with infinitely many rule variables p : p = 7 for each sequence pr.

1. The logical axioms are valid, and Gen preserves validity.

2. The Base Principles (Instantiation, Rules, Cut, and Concretion) are
valid in all definability models.

3. The A Principles are valid in all A-definability models.
4. Rule Gen preserves validity in all definability models.

Proof. The proof of the validity of the logical axioms is standard (see e.g.
Bacon (2023b) §15.2), except for Formal Functionality, and 7. We begin
with the former. Suppose that v([VZ(A = B)]?) = 1 where [-] is an inter-
pretation of the signatures Z*, X", Since T include all the free variables in
A and in B that get bound in C, [A]Y = [B]Y for all assignments ¢'[Z]g, so
we may apply Compositionality; to conclude that [C]9 = [C[A/B]].

For n we must show that Ax.Mx is intersubstitutable with M, provided x
is not free in M. By Compositionality, it suffices to show that [[' - \x. Mz :
o—=71]=[TF M:o — 7]. Note that our definition of A[[',z : o b Mz : 7]
is the unique function p : D? — D7 (not necessarily in R) such that the
following equation holds.

appo(pxid)=[Iz:0kF Mz : 7]

However, Concretion says that this equation holds when p = [I' - M]. It
follows that [I' = M] = A[[',z : ¢ = Mx] by the uniqueness of p. Finally the
right-hand-side is [I' - Az.Mx] by the condition for abstraction in definition
3.9.

]

Theorem 5.2 (Completeness). If A is valid in every A-definability model
then F5 A.

58

Proof. Suppose that T'is a A consistent theory, i.e. T F/y. We can consider T’
as formulated in the language L7 (A, =, X) where 3 contains infinitely many
unused constants at each type, o, and = contains infinitely many unused “rule
variables” r : p = o — i.e. constants and rules that make no appearance in
T. By a standard procedure (see e.g. Bacon (2023b) §15.3) we can extend
this into a negation complete, witness complete theory 7”. This means that
for any formula A, A € T" or mA € T, and if 9x.A € T" then there is some
constant ¢ such that Alc/z] € T".

Next we extend 7" to a “rule witness complete” theory 7", which means
that for any definability statement A >z B, either —(A >z B) € T” or
VZ(r(A) = B) € T" for some rule variable . First we enumerate all the
variable rules r,, and all closed formulas C, of the new language of the form
A >z B in such a way that r, only ever appears in formulas Cj, with k& > n.
The procedure is built up in stages as follows with 7o = T" and

T T, U{VZ(r,(A) = B} if this result is -5 consistent and C,, = A >z B
"\ T, U {-A s B) if not, and C,, = A > B

Observe that if T}, is consistent, so is Ty,,;1. For if T}, U {VZ.r,(A) = B} is
inconsistent, then by the deduction theorem, T, -y 37.7,(A) # B, and so
T, + —A >z B since r, does not appear in 7},. So T}, U {—J >z B} must be
consistent if 7}, is. Thus T},; is consistent.

We turn our theory 7" into a definability model as follows. For a closed
term M of type o we write [M] for {N : 0 | M =, N € T"}. We will write

[M] for a sequence [M],...,[M,] and we will write [A] > [B] as shorthand

for A>BeT.
o D7 :={[M]|F M :0is aclosed term of L(A,=",XT)}
o [T:pFC:7] = ([A],....[A]) = [C[A/Z]]. [c] =[] for ¢ € X,

[r] = [M] ~ [r(M)] for r € =Z.
o RS :={[T:prC:0]: D" =D’ |Z:pFC:0€ L (AZ,0)}
e app([M],[N]) = [MN],

v([A)=1if AeT

Note that logical forms in this model are determined by sequents in the
language without logical constants, or the syncategorematic operations —

59

,V,=. The reason we do not include the latter operations in our logical forms
is because we are remaining neutral about whether they are logical. We will
write [M] for a sequence [My], ..., [M,].

First we need to show that (D, R, app) is a A-definability structure, then
we need to show that [[-] satisfies the environment model condition on it, and
finally we need to show it is a definability model by showing that v satisfies
the relevant truth clauses.

To be a definability structure we must establish (comp) and (func). For

(comp) suppose that r = [T : 01,y : 0,Z : O - A] € Rgloé ,and p = [w :
pF B:o] € RZ. We want to show that r o (idj, x p x idg,) € RZQW'

The substitution lemma guarantees that the sequent T : 61, : 5,% : 0 -
B[A/x] : o is derivable, and the function [Z : 6,,W : p,Z : 0, = B[A/z] : o]
does the job. That ro (idg, X p xidg,) = [T: 61, W : p,Z : 6, - B[A/z] : 0]
is exactly the statement of the Compositionality, established below.

For (func) suppose that r = [Z : p = F' : 0 — 7] € RZ77. We want to
show that app o (r x id,) € RZ,. By concretion the sequent T : p,y : o F
Fy:71isin L7 (A, Z,0). Moreover [T : p,y: 0ot Fy: 7] =appo (r xid,)
because this is the statement of the semantic clause for concretion, which is
established below.

Next we show that this definability structure is a A-definability structure.
Clearly,id =z : ok x: 0] € R]. If switch € A and [z :p,,z:0,y: 7, W :
P FC € R%lm%. Then [z : py,y : 7,2 : 0,W : py - C] € R%lm% is also in
R, and this is just the result of applying switch to the former function. So
R is closed under switch. merge and vac are established similarly.

For abs we must show that the structure is A-closed. Suppose that [T', x :
o C : 7] is a Russellian function. We will define A\[g : p,x : 0 - C : 7]
to be [I' F A\x.C : ¢ — 7]. First observe that app([I' F A\z.C' : ¢ —

1A, [B]) = app([(\e-C[A/7), [B]) = (e CLA/7) B] = [C[AB/7z)) = [7
p,x ok C:7][A][B]. This establishes that condition app o (Ar x id) = r.
Next we need to show that this is the unique such logical form. Suppose
that app([y : o+ M : o — 7][A],[B]) = [y : p,x : o = C : 7][A][B] =
[(Az.C[A/y])B] for all AB. Then because T is witness complete we have
Voyr.(Mx =, (Ax.C)z) € T. By Formal Functionality and 7 it follows that
M =, \x.C € T so that [M] = [A\x.C] as required.

Next we show that [-] satisfies the environment model condition. First
we will establish Compositionality;. Suppose that [Z:p+ A] = [z :p+ B].

This means [A[D/Z]] = [B[D/z]] for all type apt sequences of terms D, and

60

by the witness completeness of 7" this means that VZ(A =, B)T”. By
Formal Functionality, C = C — C = C[B/A] € T", and by MP and Refl
C =C[B/A] €T". So [C] = [C[B/A]] as required.

For Compositionality,, we apply [gZ7 : pfp = M[N/z]] and [gz7 :
pop F M]o(id x [z : 8 + N| x id) to an appropriate sequence [ABA].
In the former case we obtain [M[N/z|[ABA’/yzy/]] and in the latter we get
[M[AA' Jyy/|[N[B/Z]/x]]. Because 7ja7 are all the free variables in M, and Z
all the variables in NV, and these don’t overlap, these substitutions commute
and we end up with the same term.

The other conditions App, Conc, Rules, Abs, Id, Vac, Merge, and Switch
are pretty much straightforward. For instance, for Concretion we can reason
from right to left: app([y : p - M : ¢ — 7][A],[B]) = (M[A/y))B =
Mz[AB/yx) = [y : p,x : 0 & Mz : 7][A][B]. So appo ([l W M : 0 —
7] xid) = [I',x : 0 = M : 7] as required.

Lastly we must show that it is a model. The clauses for the logical
operations —, V and = are standard and follow from the negation com-
pleteness and the witness completeness of 7. The key thing to check is
the clause for definability sentences. For each closed definability sentence,
- A >z B, we must show that: v([A >z B)Y) =1 (ie. A>z B € T") if
and only if there exists a sequent T : p = C' : 7 of L7(A,Z,0) such that
[z:2F C:7)([A1]Y,...,[A.]?) = [B]Y for every variable assignment
J@lg. B

Now if A>zB € T" it follows that for some witnessing rule r,,, VZ(r,(A) =
B) € T", and thus v([F VZ(r,(A) = B)]Y) = 1. Since r,(A) = B contains
only 7 free, this means that for all variable assignments ¢'[z]g, v([r,(A) =
B]9) = 1 so that [r,(A;...A,)7] = [B]? for all relevant sequences. Thus
[Z:7F ro(@)]([A]Y, ..., [A.]7) = [B]Y for all such ¢, so [T : T F 7,(T)]
is the required logical form.

Conversely, suppose there exists a sequent y; : 01...y, : 0, = C' : 7 such
that [Z:pF C: 7]([A]?, ..., [A.]Y) = [B]Y for every variable assignment
¢'[Z]g. By Compositionality the left hand side of the required identity is the
same as [C[A/7]]?. By the semantic clause for equality, this means that
v([VZ(C[A/g] = B]Y)) = 1, and thus that VZ(C[A/y] = B) € T. By lemma
5.1, since y1 1 01...y, 1 0, F Cisin L7(A,Z,0), y>5 C € T, and then by
Instantiation A >z, z, C[A1/y1...An/ys] € T. Since the above universally
quantified identity is in 7', we infer the desired result that A >z, z B €T
using Formal Functionality.

61

5.4 The logic of conditional definability

Here I have a less complete picture. But I will present some partial results.

Let’s begin with some principles valid in all conditional definability struc-
tures. Since (D, R[X], app) is a definability structure for any choice of X all
Base Principles hold of >* when X is held fixed. Additionally we have the
following principles are valid

Reflexivity >14t4

Weakening I'>2 A — ' 2" A whenever {¥} C {¥'}

Upper Cut (I>2 A) — (A A A Y B) = (AT, A 2 B)
Lower Cut (I'>Z A) — (A D?A B) — (A D%E' B).

Proposition 5.4. The following may be derived from the principle listed
above.

Lowering '’ A, A>y B -1, A>ya B
Monotonicity ' > A - A4 B 5 Ap*' B

Lowering follows from Upper Cut using an instance of Refl (>4 A4) as
a premise, letting ¥; = {A} and letting the remaining Greek letters denote
the empty sequence. Monotonicity is also an instance of Lower Cut.

Although I have not worked through the details, I believe the principles
listed are complete for the logic of all conditional definability structures.

What about the logic of minimal conditional definability structures. Here
I have some observations that produce axiomatizations in the cases where

id, merge € A. Consider first the full A-signature {id, vac, switch, merge, abs}.

We can completely axiomatize the minimal conditional definability structure,
because in that structure conditional definability is definable from uncondi-
tional definability, via the following reduction:

Reduction(switch,vac) I'>2 A< T, A>z A

62

Notice that in the presence of Lowering the right-to-left direction is already
derivable, and is consequently true in any conditional definability structure.
The left-to-right direction is specific to minimal conditional definability struc-
tures. By adding this to our existing axiomatization of unconditional logical
definability we obtain a sound and complete axiomatization of the logic of
minimal conditional {id, vac, switch, merge, abs}-structures.

Here is the informal reason this reduction works. Suppose that there is a
propositional function constructed from constituents in A that can be filled
with the constituents I' to get A. We can then poke the constituents from
A out of that propositional function in a certain way to get a logical form
which can then be filled with I' and A together to get A. Because we are
working in the full A-signature, the order and the number of the constituents
from A in the original propositional function doesn’t matter, because there
is a suitable logical form which will reorder and duplicate elements of A, in
the sequence it is presented, as needed.

More generally, in the cases where merge € A (and still assuming id € A)
L[A] can completely be axiomatized by adding to our axiomatization of L[A]
the axiom:

Reduction I' >2 A «+ \/ (s1c(ra) = >z A where X ranges over sequences
with no-repetitions.

Y meets the requirement above when ¥ is of the form AjA; ... A, A A
where each of A; ... A, only contain elements from A (i.e. {A;} C{A}, A: 7
is a subsequence of I' and the sequence contains no repetitions. Because there
are only finitely many sequences like this, this disjunction is finite. The reason
this axiom suffices in the presence of merge is because we can see that in any
minimal conditional definability structure satisfying merge, I' >2 A holds if
and only if ¥ > A holds for some ¥ of the required form: see proposition 5.5
below. However, in definability structures in which merge does not hold, the
restriction to sequences without repetitions is not sufficient, and so there is
no finite disjunction that can capture the force of the conditional definability
structure.

As we saw above, this axiom can be simplified in the presence of the
further axioms Switch and Vac. In the case that we have the axioms Switch
and Vac, this disjunction is equivalent to I') A > A, and so we can instead
use the simple axiom Reduction(switch, vac) stated above. In the case that
we have only Switch or only Vac, this big disjunction is equivalent to a
disjunction with a smaller number of disjuncts. Thus this axiom suffices to

63

capture the reduction for the logic of any A-signature, although the force of
the axiom is different depending on the background logic of unconditional
definability and will often be replaceable with a more transparent axiom.

The following proposition establishes the soundness of Reduction in all
minimal conditional A-definability models.

Proposition 5.5.

1. Suppose that A is the full gap signature {vac, merge, switch, id, abs},
that (D, R,app) is a A-definability structure (and is conditionally \-
closed if abs € A), and that d € D?. Then if a € (RM{dY))g, there is
ar, € R%p such that r,(de) = a(e) for every e € DP.

2. More generally, suppose that, that (D, R,app) is a A-definability struc-
ture, and that d € D°. Then ifa € (RA[{E}]%, there is a xa € R and

collection of sequences d,...dp+1 whose elements are all drawn from d
such that ra(dyey...dyend, 1) = a(ér...e,) for every e1...e, € DP.

Proof. We prove 1. Say that a function a : D? — D7 is reducible when

there exists a r € R9, such that r(de) = a(e) for all € € DP. Let S be the

set of reducible functions. Recall that R*[d] is the smallest set of functions
containing {d } closed under the operations of concretion (r — appo(rxid)),
parallel composition ((r,p) — ro(id x p x id)), id, vac, merge, switch and
A. Thus, in order to show that R[d] C S, it suffices to show that S contains
{E*} and is closed under the operations of concretion, parallel composition,
id, vac, merge, switch and A

(i) We must show that a = % + d; with d; in d is reducible. Since
id,vac € X, id € Rzz and so id o vacg, € R%’ and vacg, (d) = d; as required.

(ii) Suppose that a : D773 — D7 and b : D? — D7 are reducible. So
there exists r,, T}, in R, such that r,(de;ces) = a(€1¢e3), and rp(des) = b(&s).

Tgen a(élb_(ég)ég) = ra(deiry(dey)es). We can construct T oo (fdxbxid) a5
rpo (id X r, x id) omerge. Note that we need to postcompose with a suitable
sequence of merges: if we don’t it won’t map the sequence dejdeses to the
desired output de;eses.

(iii) Suppose a : D? — D77 is reducible. So there is some r, in R
such that ry(de) = a(€). We want Tappo(axid)(dec) = app(a(e),c), which
can be obtained by letting rappo(axia) be app o (ra x id). Since this is in R,
app o (a x id) is reducible.

64

(iv) Suppose that a € D? — D7 is reducible, and r,(dec) = a(ec) for
every dec, where 1, is in R. Then by A-closure Ary is also in R and has the
property that app(Ara(de),c) = ra(dec) = a(€) = app(la(€),c) for every
dec. This means app o (Ara x id)(d) = a = app o (Aa x id). Note that since
Ary € R, Ara(d) € R[{d}] since Ara(d) can be obtained by composing r,
with the functions * — d;. Now, since Aa is the unique Russellian function
in R[{d}] such that app o (\a)(€) x id) = a (because we have assumed that
R is conditionally A-closed), it follows that Ar,)(d) = a.

Checking the cases for vac, switch and merge is straightforward. In each
case we assume that a is reducible, is represented by r, in R such that
ra(de) = a(€), and we set Taowac) = Ta O Vac, Taomerge) = T'a O Merge, and
Taoswitch) = T'a © SWitch, choosing appropriate type-subscripts, to obtain their
reductions and establish they are reducible too.

The proof of 2 is similar, except one must be more careful about the
number and positioning of d in the arguments of r,. O]

5.5 Some Remarks on Logics without Identity

We have set aside the case of logics without Identity, i.e. L[A] where id ¢ A
because it requires several modifications to the formalism. There are two
sources of complications that make the results of the last section hard to
generalize. One is that variables on their own are not terms of £(A, =,)
when id ¢ A, requiring more complications in the syntax of >, and more
care over the statement of the axioms and rules. The second complication
is that primitive syncategorematic rules are not grammatically intersubsti-
tutible with arbitrary propositional functions, meaning we need to have a
stronger version of Rule Gen. Here I briefly described the complications, and
outline a strategy for generalizing the completeness results of the previous
section.

Observe that in order to form the sequent - x >7 we would need to
begin with two instances of the Identity sequent x : o - x : ¢. In general, in

order to be able to form terms of the form Ay,..., A, >z B where some of
Ay, ..., A,, B are variables we need to use the more general rule for forming
> terms described at the end of section 2.3.

'+ A r,FA, YFB

Abt...ta>z B

where A is the sequence sy ...s; where s; is either a variable or a sequence

65

I';, and t; is s; if s; is a variable, and ¢; is A; if s; is I';. Given this rule, 2 >7
is a well-formed sentence, even though z is not a term.

The second complication is that, in the absence of identity, primitive
syncategorematic rules, r, do not always determine (lingistic) propositional
functions, because the sequent of the form = : @ = T may not be part of the
language. So Rule Gen seems too weak: we may be unable to establish of an
arbitrary primitive rule, r, that =VZ(r(A) = B), when this might hold for an
arbitrary propositional function.

This is because it is possible to form a linguistic propositional function of
the form I - 7(A) if we have already constructed the propositional functions
I A; fori=1...n, but it is not possible to form a propositional function
of the form 7 : @ F r(T) using bare variables without Identity. This means
that the rule Rule Gen needs to be formulated carefully. Thus we should
introduce propositional function variables as distinct from primitive rules,
that can have an arbirary logical form. This means we add a new sequent
rule for propositional function variables.

X101 Ty o Ep(ay,. .. 1)

Without Identity, Rules does not imply the new rule, nor conversely. With
identity Rules implies the above, since it follows from the premises x; F
x; ¢ = 1...n. The reverse implication is not possible without taking the
substitution lemma as instead a primitive rule; in the present case it is an
admissible rule.

The proposed axiomatization of L[A] when id ¢ A is described as be-
fore with the following exceptions. Firstly, the axiom Id, x >, x must be
removed. Second, Rule Gen needs to be formulated using variables for ar-
bitrary propositional functions, rather than primitive rules. Note that we
are not to eliminate the propositional function variables when abs € A in
the way described in section 5.2 because Decomposition is not a well-formed
sentence without Id since it involves quantification into predicating position.
The propositional function variables will play the role of the witnessing rules
in the proof of the completeness theorem since it is quantification over propo-
sitional functions, not the primitive rules, that is used in the truth clauses
for metaphysical definability.

66

A The Substitution Lemma

Lemma A.1 (The substitution lemma). If 'z : 0,1V - M : 7 and A
N : o are deriwable in L(A,Z,%), and A has no variables in common with
Cyz:o, T, then T, AT = M[N/x] : 7 is also derivable in L(A,=Z,X).

Proof. Pick a fixed proof, D, of 'z : o," - M : 7. We can transform it
into a proof of ') A)T" F M[N/x] : 7 in the following way.

The guiding idea in this argument is that it is possible to trace the variable
x : o backwards through the proof of I'x : o,V = M : 7, being careful
about the fact that the rule merge relabels variables, and systematically
replace variables tracing back from x with a copy of A, and by replacing free
occurrences of these variables on the right-hand-side of the sequent suitable
copies of N.

For each variable y let A, be a variant of A constructed from new variables
of matching type: we require that A, is disjoint from A, for y # 2 and not
containing any variables appearing in the derivation of I'yz : o, " + M
7 and A - N : 0. Let E, be the proof of A, - N, : 7 obntained by
relabeling the variables in the proof of A = N : 7, and N, is the resultant
term introduced by this derivation.

Let Y = {y1,...,yn} be a set of variables. By I'¥ we shall mean the
sequence obtained by replacing each occurrence of y in I' with A, for each
variabley € Y, and by MY we mean the result of replacing all free occurrences
of y with Ny in M, fory € Y.

We can now describe a transformation of a derivation D to DY as follows.

Dy Do\y _ DY Dy
app (Fggm %) = “sveay
abs, conc
rex,Dy D,\Y _ T€%,DY DY
sync (Thr(Ma,...,.My):0) Thr(Ma,...,Mp)Y o
: Y _ Ey . . .
id ()" = PN — if y €Y, and is —— otherwise.
XHM:T sYnpmY y

This leaves only the case for merge to describe. when z ¢ Y we the translation
simply commutes as in the rules vac, switch, abs and conc. In the case that

67

z € Y it is given as follows.
DYUizy}

D (T,z:0,%,y:0, Ay}t - MYUHzyd . 7

(x:o0%y:0AFM:T)y_ :
Uyz:0, 5 A Mz/x][z/y] : T (T, z:0, 5 AN)Y = (M[z/z][z/y])Y : T

Since (T2 : 0, %,y : o, A)Y2=9 = (TV A, 2V A, AY). So here the verti-
cals elipses are filled with a series of applications of merge that successively
merge the first, second, third etc. variables of A, and A, into the first,
second, third, etc variables of A,.

The translations of vac and switch are subject to a similar issue, and must
be defined as follows

DY
D Y A, A TY MY 7
F,x:a,y:T,F’I—M:T)yi :
y:rz:o'FM:7 Y A, A, TY MY o7

(

here the : represent a series of applications of switch that can transform the
sequence A,, A, into Ay, A,.

(o) =
XMt XY MY
T, Ag,Ay,I'EM

we might get a transition like FA, AT which must be obtained by several
applications of switch, rather than one. In the case of vac you might get a
transition like % which is obtained by repeatedly applying vac, one
application for each variable in A.

It can be seen by inspection that the transformation maps a derivation
to a derivation. Finally, it follows that be seen that if D is a derivation
I'z:0,I"+ M : 7, then DI*} is a derivation, by the above, and that it is a
derivation of ', A,T” F+ M[N/x] : 7 by the way the translation is defined.

The result is not quite a proof. For instance, when we apply the transfor-
mation to an instance of merge we get the transition I', A, TV, A, T = M : 7 to
A T, T"v = M : 7 which is not an instance of merge, but can be obtained
by a sequence of applications of merge. Similarly, instances of switch and
vac transform to transitions that can be obtained by a sequence of switches,
and vacs.

[]

68

References

Andrew Bacon. The broadest necessity. Journal of Philosophical Logic, 47
(5):733-783, 2018. doi: 10.1007/s10992-017-9447-9.

Andrew Bacon. Substitution structures. Journal of Philosophical Logic, 48
(6):1017-1075, 2019. doi: 10.1007/s10992-019-09505-z.

Andrew Bacon. Logical combinatorialism. Philosophical Review, 129(4):537—
589, 2020. doi: 10.1215/00318108-8540944.

Andrew Bacon. A theory of structured propositions. Philosophical Review,
132(2):173-238, 2023a. doi: 10.1215/00318108-102944009.

Andrew Bacon. A Philosophical Introduction to Higher-Order Logics. Rout-
ledge, 2023b.

Andrew Bacon and Cian Dorr. Classicism. In Peter Fritz and Nicholas K.
Jones, editors, Higher-order Metaphysics. Oxford University Press, 2024.

Francis Herbert Bradley. Appearance and Reality: A Metaphysical Essay.
London, England, 1893.

Cian Dorr. Non-symmetric relations. In Dean Zimmerman, editor, Ozford
Studies in Metaphysics Volume 1, pages 155-92. Oxford University Press,
2004.

Cian Dorr. To be f is to be g. Philosophical Perspectives, 30(1):39-134, 2016.
doi: 10.1111/phpe.12079.

Kit Fine. Neutral relations. Philosophical Review, 109(1):1-33, 2000. doi:
10.1215/00318108-109-1-1.

Kit Fine. The pure logic of ground. Review of Symbolic Logic, 5(1):1-25,
2012. doi: 10.1017/s1755020311000086.

Peter Fritz. Ground and grain. Philosophy and Phenomenological Research,
105(2):299-330, 2021. doi: 10.1111/phpr.12822.

Jeremy Goodman. Reality is not structured. Analysis, 77(1):43-53, 2017.
doi: 10.1093/analys/anw002.

69

Jeremy Goodman. Agglomerative algebras. Journal of Philosophical Logic,
48(4):631-648, 2018. doi: 10.1007/s10992-018-9488-8.

Joachim Lambek. Deductive systems and categories ii. standard construc-
tions and closed categories. In Category Theory, Homology Theory and
their Applications I: Proceedings of the Conference held at the Seattle Re-
search Center of the Battelle Memorial Institute, June 24—July 19, 1968
Volume One, pages 76—122. Springer, 1968.

John C Mitchell. Foundations for programming languages, volume 1. MIT
press Cambridge, 1996.

John Myhill. Problems arising in the formalization of intensional logic.
Logique Et Analyse, 1(1):78-83, 1958. doi: 10.2307/2272577.

F. P. Ramsey. On facts and propositions. In Simon Blackburn and Keith
Simmons, editors, Truth. Oxford University Press, 1999.

Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.
Bertrand Russell. Principles of Mathematics. Routledge, New York,, 1903.
Bertrand Russell. The Philosophy of Logical Atomism. Open Court, 1940.

Gabriel Uzquiano. A neglected resolution of russell?’s paradox of
propositions. Review of Symbolic Logic, 8(2):328-344, 2015. doi:
10.1017/s1755020315000106.

Timothy Williamson. Converse relations. Philosophical Review, 94(2):249—
262, 1985. doi: 10.2307/2185430.

Ludwig Wittgenstein. Tractatus Logico-Philosophicus (Trans. Pears and
Mecguinness). Routledge, New York,, 1921.

70

